Hankel operators

on the Bergman space of the unit ball

Author:
Maria Nowak

Journal:
Proc. Amer. Math. Soc. **126** (1998), 2005-2012

MSC (1991):
Primary 30H05, 47B38

DOI:
https://doi.org/10.1090/S0002-9939-98-04252-X

MathSciNet review:
1443848

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the bounded holomorphic functions in the unit ball of for which the operator is compact. For the result was obtained by Axler and Gorkin in 1988 and by Zheng in 1989.

**[1]**P.Ahern, M.Flores, and W.Rudin,*An Invariant Volume-Mean-Value Property*, J. Funct. Anal.**111**(1993), 380-397. MR**94b:31002****[2]**P.Ahern and W.Rudin,*-harmonic product*, Indag. Mathem., N.S.,**2 (2)**(1991), 141-147. MR**92g:32013****[3]**J. Arazy, S.Fisher and J Peetre,*Hankel operators on weighted Bergman spaces*, Amer.J. Math.**110**(1988), 989-1054. MR**90a:47067****[4]**S.Axler,*The Bergman space , Bloch space,and the commutators of multiplication operators*, Duke Math. J.**53**(1986), 315-332. MR**87m:47064****[5]**S.Axler,*Bergman spaces and their operators, Surveys of some recent results on operator theory*, Pitman research notes in mathematics series,**No 171**(1988), 1-50. MR**90b:47048****[6]**S.Axler and P.Gorkin,*Algebras on the disk and doubly commuting multiplication operators*, Trans. Amer. Math. Soc.**309**(1988), 711-723. MR**90a:46133****[7]**D.Békollé, C.A. Berger, L.A.Coburn, and Kehe Zhu,*BMO in the Bergman metric on bounded symmetric domains*, J. Funct. Anal.**93**(1990), 310-350. MR**91j:32034****[8]**Huiping Li and D.H. Luecking,*BMO on strongly pseudoconvex domains: Hankel operators, Duality and - estimates*, Trans. Amer. Math. Soc.**346(2)**(1994). MR**95b:47027****[9]**M.Jevti\'{c} and M.Pavlovi\'{c},*On - harmonic Bloch space*, Proc. Amer. Math.Soc.**123 (5)**(1995), 1385- 1392. MR**95i:32009****[11]**Z.J.Lou,*Characterizations of Bloch functions on the unit ball of*, Kodai Math. J.**16**(1993), 74-78. MR**94b:32007****[10]**W.Rudin,*Function Theory in the Unit Ball of*, Springer-Verlag, 1980. MR**82i:32002****[12]**R.M. Timoney,*Bloch functions in several complex variables*, Bull. London Math. Soc.**12**(1980), 241-267. MR**83b:32004****[13]**R.M. Timoney,*Bloch functions in several complex variables, II*, J.Reine Angew. Math.**319**(1980), 1-22. MR**83b:32005****[14]**D.Zheng,*Hankel operators and Toeplitz operators on the Bergman Space*, J. Funct. Anal.**83**(1989), 89-120. MR**91b:47057**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30H05,
47B38

Retrieve articles in all journals with MSC (1991): 30H05, 47B38

Additional Information

**Maria Nowak**

Affiliation:
Instytut Matematyki UMCS , pl. Marii Curie-Skłodowskiej 1,20-031 Lublin, Poland

Email:
nowakm@golem.umcs.lublin.pl

DOI:
https://doi.org/10.1090/S0002-9939-98-04252-X

Received by editor(s):
December 6, 1995

Received by editor(s) in revised form:
December 10, 1996

Additional Notes:
This work was supported in part by KBN grant No. 2 PO3A- 002-08.

Communicated by:
Theodore W. Gamelin

Article copyright:
© Copyright 1998
American Mathematical Society