A note on the reducibility of automorphisms of the Klein curve and the $\eta$-invariant of mapping tori
HTML articles powered by AMS MathViewer
- by Takayuki Morifuji
- Proc. Amer. Math. Soc. 126 (1998), 1945-1947
- DOI: https://doi.org/10.1090/S0002-9939-98-04297-X
- PDF | Request permission
Abstract:
We give a characterization for the reducibility of automorphisms of the genus 3 Klein curve in terms of the $\eta$-invariant of finite order mapping tori.References
- Michael Atiyah, On framings of $3$-manifolds, Topology 29 (1990), no. 1, 1–7. MR 1046621, DOI 10.1016/0040-9383(90)90021-B
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- Marston Conder, Hurwitz groups: a brief survey, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 359–370. MR 1041434, DOI 10.1090/S0273-0979-1990-15933-6
- I. M. Isaacs, Character theory of finite groups, Academic Press, New York (1990).
- Yasushi Kasahara, Reducibility and orders of periodic automorphisms of surfaces, Osaka J. Math. 28 (1991), no. 4, 985–997. MR 1152963
- A. Matsuura, The automorphism group of the Klein curve in the mapping class group of genus 3, Proc. Japan Acad. 72 Ser. A (1996), 139–140.
- Werner Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201 (1973), 239–264 (German). MR 331382, DOI 10.1007/BF01427946
- T. Morifuji, The $\eta$-invariant of mapping tori with finite monodromies, Topology Appl. 75 (1997), 41–49.
Bibliographic Information
- Takayuki Morifuji
- Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153, Japan
- Email: morifuji@ms406ss5.ms.u-tokyo.ac.jp
- Received by editor(s): October 15, 1996
- Received by editor(s) in revised form: December 20, 1996
- Communicated by: Ronald A. Fintushel
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1945-1947
- MSC (1991): Primary 20F05, 57R20; Secondary 57M10, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-98-04297-X
- MathSciNet review: 1443398