Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces
HTML articles powered by AMS MathViewer
- by Roland Uhl
- Proc. Amer. Math. Soc. 126 (1998), 1999-2003
- DOI: https://doi.org/10.1090/S0002-9939-98-04311-1
- PDF | Request permission
Abstract:
A well known comparison theorem on ordinary differential inequalities with quasimonotone right-hand side $f(t,x)$ was carried over by Volkmann (1972) to (pre)ordered topological vector spaces. We prove that the quasimonotonicity of $f$ is a necessary condition here if $f$ is continuous. Then it is shown that quasimonotonicity can be verified by considering only a few positive continuous linear functionals in the definition (for instance in $\ell _{\infty }$ by taking coordinate functionals).References
- E. Kamke, Zur Theorie der Systeme gewöhnlicher Differentialgleichungen II, Acta Math. 58 (1932), 57–85.
- Roland Lemmert, Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen, Funkcial. Ekvac. 32 (1989), no. 2, 243–249 (German). MR 1019432
- M. Müller, Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen, Math. Z. 26 (1927), 619–645.
- Sabina Schmidt, Fixed points for discontinuous quasi-monotone maps in sequence spaces, Proc. Amer. Math. Soc. 115 (1992), no. 2, 361–363. MR 1081098, DOI 10.1090/S0002-9939-1992-1081098-2
- Alice Simon and Peter Volkmann, Remark on quasimonotonicity, Inequalities and applications, World Sci. Ser. Appl. Anal., vol. 3, World Sci. Publ., River Edge, NJ, 1994, pp. 543–548. MR 1299583
- Alice Simon and Peter Volkmann, Parabolic inequalities in ordered topological vector spaces, Nonlinear Anal. 25 (1995), no. 9-10, 1051–1054. MR 1350727, DOI 10.1016/0362-546X(95)00099-H
- R. Uhl, An extension of Max Müller’s theorem to differential equations in ordered Banach spaces, Funkcial. Ekvac. 39 (1996), 203–216.
- Peter Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164 (German). MR 308547, DOI 10.1007/BF01112607
- Peter Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201–210 (German). MR 322305, DOI 10.1007/BF01629254
- Peter Volkmann, Cinq cours sur les équations différentielles dans les espaces de Banach, Topological methods in differential equations and inclusions (Montreal, PQ, 1994) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 472, Kluwer Acad. Publ., Dordrecht, 1995, pp. 501–520 (French, with English and French summaries). MR 1368679, DOI 10.1007/978-94-011-0339-8_{1}1
- Wolfgang Walter, Gewöhnliche Differential-Ungleichungen im Banachraum, Arch. Math. (Basel) 20 (1969), 36–47. MR 244594, DOI 10.1007/BF01898989
- Wolfgang Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. Translated from the German by Lisa Rosenblatt and Lawrence Shampine. MR 0271508, DOI 10.1007/978-3-642-86405-6
Bibliographic Information
- Roland Uhl
- Affiliation: Mathematisches Institut II, Universität Karlsruhe, D-76128 Karlsruhe, Germany
- Email: roland.uhl@math.uni-karlsruhe.de
- Received by editor(s): December 10, 1996
- Communicated by: Hal L. Smith
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1999-2003
- MSC (1991): Primary 34G20, 34A40, 47H07
- DOI: https://doi.org/10.1090/S0002-9939-98-04311-1
- MathSciNet review: 1443412