The valence of harmonic polynomials
HTML articles powered by AMS MathViewer
- by A. S. Wilmshurst
- Proc. Amer. Math. Soc. 126 (1998), 2077-2081
- DOI: https://doi.org/10.1090/S0002-9939-98-04315-9
- PDF | Request permission
Abstract:
The paper gives an upper bound for the valence of harmonic polynomials. An example is given to show that this bound is sharp.References
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25. MR 752388, DOI 10.5186/aasfm.1984.0905
- Frances Kirwan, Complex algebraic curves, London Mathematical Society Student Texts, vol. 23, Cambridge University Press, Cambridge, 1992. MR 1159092, DOI 10.1017/CBO9780511623929
- Abdallah Lyzzaik, On the valence of some classes of harmonic maps, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 2, 313–325. MR 1113430, DOI 10.1017/S0305004100070390
- Abdallah Lyzzaik, Local properties of light harmonic mappings, Canad. J. Math. 44 (1992), no. 1, 135–153. MR 1152671, DOI 10.4153/CJM-1992-008-0
- T. Sheil-Small, On the Fourier series of a finitely described convex curve and a conjecture of H. S. Shapiro, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 3, 513–527. MR 803610, DOI 10.1017/S0305004100063714
- A. S. Wilmshurst, Complex harmonic mappings and the valence of harmonic polynomials, D. Phil. thesis, University of York, England, 1994.
Bibliographic Information
- A. S. Wilmshurst
- Affiliation: Department of Mathematics, University of York, York Y01 5DD, England
- Communicated by: Albert Baernstein II
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2077-2081
- MSC (1991): Primary 30C55
- DOI: https://doi.org/10.1090/S0002-9939-98-04315-9
- MathSciNet review: 1443416