Evading predictors with creatures
HTML articles powered by AMS MathViewer
- by Otmar Spinas
- Proc. Amer. Math. Soc. 126 (1998), 2103-2115
- DOI: https://doi.org/10.1090/S0002-9939-98-04410-4
- PDF | Request permission
Abstract:
We continue the theory of evasion and prediction which was introduced by Blass and developed by Brendle, Shelah, and Laflamme. We prove that for arbitrary sufficiently different $f,g\in ^{\omega }\omega$, it is consistent to have ${\mathfrak {e}}_{g}<{\mathfrak {e}}_{f}$, where ${\mathfrak {e}}_{f}$ is the evasion number of the space $\prod _{n<\omega }f(n)$. For this we apply a variant of Shelah’s “creature forcing”.References
- Andreas Blass, Cardinal characteristics and the product of countably many infinite cyclic groups, J. Algebra 169 (1994), no. 2, 512–540. MR 1297160, DOI 10.1006/jabr.1994.1295
- Jörg Brendle, Evasion and prediction—the Specker phenomenon and Gross spaces, Forum Math. 7 (1995), no. 5, 513–541. MR 1346879, DOI 10.1515/form.1995.7.513
- Jörg Brendle and Saharon Shelah, Evasion and prediction. II, J. London Math. Soc. (2) 53 (1996), no. 1, 19–27. MR 1362683, DOI 10.1112/jlms/53.1.19
- Martin Goldstern and Saharon Shelah, Many simple cardinal invariants, Arch. Math. Logic 32 (1993), no. 3, 203–221. MR 1201650, DOI 10.1007/BF01375552
- C. Laflamme, Combinatorial aspects of $F_{\sigma }$ filters with an application to ${\mathcal {N}}$-sets, Proc. AMS, to appear.
- A. Roslanowski and S. Shelah, Localizations of infinite subsets of $\omega$, Arch. Math. Logic 35 (1996), 315–339.
- A. Roslanowski and S. Shelah, Norms on possibilities I, preprint, pp.1–186, (publication 470 in Shelah’s list of publications).
- Saharon Shelah, On cardinal invariants of the continuum, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 183–207. MR 763901, DOI 10.1090/conm/031/763901
- Saharon Shelah, Vive la différence. I. Nonisomorphism of ultrapowers of countable models, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 357–405. MR 1233826, DOI 10.1007/978-1-4613-9754-0_{2}0
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955, DOI 10.1007/978-3-662-21543-2
- Saharon Shelah and Otmar Spinas, Gross spaces, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4257–4277. MR 1357403, DOI 10.1090/S0002-9947-96-01658-3
- S. Shelah and O. Spinas, The distributivity numbers of $\\mathcal{P} (\omega )/fin$ and its square, Trans. AMS, to appear.
- Otmar Spinas, Cardinal invariants and quadratic forms, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 563–581. MR 1234289
Bibliographic Information
- Otmar Spinas
- Affiliation: Mathematik, ETH-Zentrum, 8092 Zürich, Switzerland
- Address at time of publication: Institut für Mathematik, Humboldt-Universität, Unter den Linden 6, 10099 Berlin, Germany
- Email: spinas@math.ethz.ch
- Additional Notes: Partially supported by a research fellowship of the Alexander von Humboldt Foundation.
- Communicated by: Andreas R. Blass
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2103-2115
- MSC (1991): Primary 03E05, 03E35
- DOI: https://doi.org/10.1090/S0002-9939-98-04410-4
- MathSciNet review: 1452829