p-INTEGRAL BASES OF A CUBIC FIELD

S¸ABAN ALACA

(Communicated by William W. Adams)

Abstract. A p-integral basis of a cubic field K is determined for each rational prime p, and then an integral basis of K and its discriminant $d(K)$ are obtained from its p-integral bases.

1. Introduction

Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree n, and let O_K denote the ring of integral elements of K. If $O_K = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \cdots + \alpha_n \mathbb{Z}$, then $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is said to be an integral basis of K. For each prime ideal P and each nonzero ideal A of K, $\nu_P(A)$ denotes the exponent of P in the prime ideal decomposition of A.

Let P be a prime ideal of K, let p be a rational prime, and let $\alpha \in K$. If $\nu_P(\alpha) \geq 0$, then α is called a P-integral element of K. If α is P-integral for each prime ideal P of K such that $P|pO_K$, then α is called a p-integral element of K. Let $\{\omega_1, \omega_2, \ldots, \omega_n\}$ be a basis of K over \mathbb{Q}, where each $\omega_i \ (1 \leq i \leq n)$ is a p-integral element of K. If every p-integral element α of K is given as $\alpha = a_1 \omega_1 + a_2 \omega_2 + \cdots + a_n \omega_n$, where the a_i are p-integral elements of \mathbb{Q}, then $\{\omega_1, \omega_2, \ldots, \omega_n\}$ is called a p-integral basis of K.

In Theorem 2.1 a p-integral basis of a cubic field K is determined for every rational prime p, and in Theorem 2.2 an integral basis of K is obtained from its p-integral bases.

Let $K = \mathbb{Q}(\theta)$, where θ is a root of the irreducible polynomial

\begin{equation}
\begin{aligned}
x^3 - ax + b &= 0, \\
a, b &\in \mathbb{Z} \text{ with } \nu_p(a) < 2 \text{ or } \nu_p(b) < 3;
\end{aligned}
\end{equation}

see [2, p. 579]. The discriminant of θ is $\Delta = 4a^3 - 27b^2$ and $\Delta = i(\theta)^2d(K)$, where $d(K)$ denotes the discriminant of K, and $i(\theta)$ is the index of θ. For each rational prime p, set $s_p = \nu_p(\Delta)$ and $\Delta_p = \Delta/p^{s_p}$.

The following three theorems are the special cases for $n = 3$ of Theorem 2.1, Theorem 3.1 and Theorem 3.3, respectively, given in [1].

Theorem 1.1. Let $K = \mathbb{Q}(\theta)$ be a cubic field, where θ is a root of the irreducible polynomial (1.1). Let p be a rational prime, and let $\alpha = (x + y\theta + \theta^2)/p^m$, where
Let $K = \mathbb{Q}(\theta)$ be a cubic field, where θ is a root of the irreducible polynomial (1.1). Let p be a rational prime, and let
\[
\frac{u + \theta}{p^i} \quad (u \in \mathbb{Z}) \quad \text{and} \quad \frac{x + y\theta + \theta^2}{p^j} \quad (x, y \in \mathbb{Z})
\]
be p-integral in K with the integers i and j as large as possible. Then
\[
\left\{ \frac{u + \theta}{p^i}, \frac{x + y\theta + \theta^2}{p^j} \right\}
\]
is a p-integral basis of K, and
\[
\nu_p(d(K)) = \nu_p(\Delta) - 2(i + j).
\]

Theorem 1.3. Let $K = \mathbb{Q}(\theta)$ be a cubic field, where θ is a root of the irreducible polynomial (1.1). If there are no rational primes dividing $i(\theta)$, then $\{1, \theta, \theta^2\}$ is an integral basis of K. Let p_1, p_2, \ldots, p_s be the distinct primes dividing $i(\theta)$. Let
\[
\left\{ 1, \frac{x^{(1)}}{p^{r_1}}, \frac{x^{(2)}}{p^{r_2}} \right\}
\]
be a p_r-integral basis of K $(r = 1, 2, \ldots, s)$ as given in Theorem 1.2. Define the integers $X^{(j)}_i$ $(i = 0, 1, \ldots, j - 1, j = 1, 2)$ by
\[
X^{(j)}_i = x^{(j)}_i \pmod{p^{r_i}} \quad (r = 1, 2, \ldots, s),
\]
and let $T_j = \prod_{r=1}^{s} p^{r_j}$ $(j = 1, 2)$. Then an integral basis of K is
\[
\left\{ 1, \frac{X^{(1)}_0 + \theta}{T_1}, \frac{X^{(2)}_0 + X^{(2)}_1\theta + \theta^2}{T_2} \right\}.
\]

2. p-INTEGRAL BASES OF A CUBIC FIELD

Theorem 2.1. Let $K = \mathbb{Q}(\theta)$ be a cubic field, where θ is a root of the irreducible polynomial (1.1). Then a 2-integral basis, a 3-integral basis, and a $p(> 3)$-integral basis of K are given in Table A, Table B, and Table C, respectively. (Note that the notation $a \equiv b \pmod{m}$ has been shortened to $a \equiv b(m)$ in the tables.)

Proof. The ideas of the proof are illustrated in one case for each table.

A: $a \equiv 1 \pmod{4}$ and $b \equiv 2 \pmod{4}$. By Theorem 1.1, $(x + y\theta + \theta^2)/2$ is not a 2-integral element of K for any pair of integers x, y. Thus by Theorem 1.2, $\{1, \theta, \theta^2\}$ is a 2-integral basis of K and $\nu_2(d(K)) = s_2 = 3$.

B: $a \equiv 3 \pmod{9}$, $\nu_3(b) = 0, b^2 \equiv 4 \pmod{9}$, $b^2 \neq a + 1 \pmod{27}$. Then $s_3 = \nu_3(\Delta) = 5$. By Theorem 1.1, $(x + \theta)/3$ is not a 3-integral element of K for any rational integer x, and $(1 - b\theta + \theta^2)/3$ is a 3-integral element of K. One can also see that $(x + y\theta + \theta^2)/3^2$ is not a 3-integral element of K for any pair of integers.
Table A

<table>
<thead>
<tr>
<th>Condition</th>
<th>2-integral basis</th>
<th>s_2</th>
<th>$\nu_2(d(K))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \equiv 1(2)$</td>
<td>${1, \theta, \theta^2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$a \equiv 0(2), b \equiv 2(4)$</td>
<td>${1, \theta, \theta^2}$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$a \equiv 0(2), b \equiv 4(8)$</td>
<td>${1, \theta, \theta^2/2}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$a \equiv 2(4), b \equiv 0(8)$</td>
<td>${1, \theta, \theta^2/2}$</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>$a \equiv 1(4), b \equiv 0(4)$</td>
<td>${1, \theta, (\theta + \theta^2)/2}$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$a \equiv 3(4), b \equiv 0(4)$</td>
<td>${1, \theta, \theta^2}$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$a \equiv 1(4), b \equiv 2(4)$</td>
<td>${1, \theta, \theta^2}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$a \equiv 3(4)$</td>
<td>$b \equiv 2(4)$</td>
<td>$s_2 \equiv 1(2)$</td>
<td>${1, \theta, (x + y\theta + \theta^2)/2m}$</td>
</tr>
<tr>
<td>$\Delta_2 \equiv 3(4)$</td>
<td>$m = (s_2 - 2)/2$</td>
<td>$3x \equiv 2a(2m)$</td>
<td>$a_y \equiv 3(b/2)(2m)$</td>
</tr>
<tr>
<td>$a \equiv 3(4)$</td>
<td>$b \equiv 2(4)$</td>
<td>$s_2 \equiv 0(2)$</td>
<td>${1, \theta, (x + y\theta + \theta^2)/2m+1}$</td>
</tr>
<tr>
<td>$\Delta_2 \equiv 1(4)$</td>
<td>$m = (s_2 - 2)/2$</td>
<td>$3x \equiv 2a(2m+1)$</td>
<td>$a_y \equiv 3(b/2) + 2a(2m+1)$</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Condition</th>
<th>3-integral basis</th>
<th>s_3</th>
<th>$\nu_3(d(K))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_3(a) = 0$</td>
<td>${1, \theta, \theta^2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\nu_3(a) = \nu_3(b) = 1$</td>
<td>${1, \theta, \theta^2}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$1 = \nu_3(b) < \nu_3(a)$</td>
<td>${1, \theta, \theta^2}$</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$2 = \nu_3(b) = \nu_3(a)$</td>
<td>${1, \theta, \theta^2/3}$</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>$2 = \nu_3(b) < \nu_3(a)$</td>
<td>${1, \theta, \theta^2/3}$</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>$1 = \nu_3(a) < \nu_3(b)$</td>
<td>${1, \theta, \theta^2/3}$</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\nu_3(b) = 0, \nu_3(a) \geq 1$</td>
<td>${1, \theta, (1 - b\theta + \theta^2)/3}$</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$a \not\equiv 3(9)$</td>
<td>$b^2 \equiv a + 1(9)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_3(b) = 0, \nu_3(a) \geq 1$</td>
<td>${1, \theta, \theta^2}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$a \not\equiv 3(9)$</td>
<td>$b^2 \not\equiv a + 1(9)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_3(b) = 0$</td>
<td>${1, \theta, (1 - b\theta + \theta^2)/3}$</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>$a \equiv 3(9)$</td>
<td>$b^2 \equiv a + 1(27)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_3(b) = 0$</td>
<td>${1, \theta, \theta^2}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$a \equiv 3(9)$</td>
<td>$b^2 \not\equiv a + 1(27)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_3(b) = 0$</td>
<td>${1, (b + \theta)/3, \theta^2}$</td>
<td>${x + y\theta + \theta^2/3m}$</td>
<td>$s_3 \geq 6$</td>
</tr>
<tr>
<td>$a \equiv 3(9)$</td>
<td>$m = [(s_3 - 2)/2]$</td>
<td>$x \equiv (-2a/3)(3^m)$</td>
<td>$2a_y \equiv 3b(3^{m+2})$</td>
</tr>
</tbody>
</table>
Table C

<table>
<thead>
<tr>
<th>Condition</th>
<th>p(> 3)-integral basis</th>
<th>(s_p)</th>
<th>(\nu_p(d(K)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_p(a) = 0, \nu_p(b) \geq 1) or (\nu_p(a) \geq 1, \nu_p(b) = 0)</td>
<td>({1, \theta, \theta^2})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 = (\nu_p(b) \leq \nu_p(a))</td>
<td>({1, \theta, \theta^2})</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2 = (\nu_p(b) \leq \nu_p(a))</td>
<td>({1, \theta, \theta^2/p})</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1 = (\nu_p(a) < \nu_p(b))</td>
<td>({1, \theta, \theta^2/p})</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(\nu_p(a) = \nu_p(b) = 0)</td>
<td>({1, \theta, (x + y\theta + \theta^2)/p^m})</td>
<td>(s_p \geq 0)</td>
<td>(s_p - 2[s_p/2])</td>
</tr>
</tbody>
</table>

\(x, y\). Thus, by Theorem 1.2, \(\{1, \theta, (1 - b\theta + \theta^2)/3\}\) is a 3-integral basis of \(K\) and \(\nu_3(d(K)) = 3\).

C: \(\nu_p(a) = \nu_p(b) = 0\). Set \(U = 9by - 2a^2\) and \(V = 2ay - 3b\). Then \(Y = (2^2a^2X^2 - U^2 - 3\Delta y^2)/2^23a^2\) and \(Z = (2^2a^2X^3 - 3aXU^2 - 3^2a\Delta Xy^2 - 3U^3 - 3^2\Delta Uy^2 + 2a\Delta U + 3^3by^3 + 23^3\Delta V - \Delta^2)/2^23a^3\).

Let \(m = [s_p/2]\). Define integers \(x, y\) by \(3x = -2a(mod p^m)\) and \(2ay = 3b(mod p^m)\), respectively. Note that \(p^m|\Delta\). Then
\[
3bU = (4a^3 - \Delta)y - 6a^2b \equiv 0(mod p^m).
\]

So, \(U \equiv 0(mod p^m)\). Hence, \(X \equiv 0(mod p^m)\), \(Y \equiv 0(mod p^m)\), and \(Z \equiv 0(mod p^m)\). Thus, by Theorem 1.1, \((x + y\theta + \theta^2)/p^m\) is a \(p\)-integral element of \(K\). Therefore, by Theorem 1.2, \(\{1, \theta, (x + y\theta + \theta^2)/p^m\}\) is a \(p\)-integral basis of \(K\), and \(\nu_p(d(K)) = s_p - 2[s_p/2]\).

Remark 2.1. Note that for any rational prime \(p\), a \(p\)-integral basis of \(K\) is given in the form \(\{1, \theta, (R_p + S_p\theta + \theta^2)/p^{T_p}\}\) except in the case
\[
\nu_3(b) = 0, \quad a \equiv 3(mod 9), \quad b^2 \equiv a + 1(mod 27)
\]
when a 3-integral basis is of the form \(\{1, (b+\theta)/3, (R_3 + S_3\theta + \theta^2)/3^{T_3}\}\). Furthermore, for only finitely many rational primes \(p\), \(T_p\) is nonzero.

Remark 2.2. The discriminant of a cubic field given in [2, Theorem 2] follows from Theorem 2.1.

The following theorem follows from Theorem 1.3 and Theorem 2.1.

Theorem 2.2. Let \(K = Q(\theta)\) be a cubic field, where \(\theta\) is a root of the irreducible polynomial (1.1). For every rational prime \(p\), set \(R_p, S_p\) and \(T_p\) as in Remark 2.1. Let \(R\) and \(S\) be integers such that for all primes \(p\)
\[
R \equiv R_p(mod p^{T_p}) \quad \text{and} \quad S \equiv S_p(mod p^{T_p}).
\]
Let \(T\) be the positive integer \(T = \prod_p p^{T_p}\). Then
\[
\left\{ 1, \theta, \frac{R + S\theta + \theta^2}{T} \right\}
\]
is an integral basis of \(K\) except in the case
\[
\nu_3(b) = 0, \quad a \equiv 3(mod 9), \quad b^2 \equiv a + 1(mod 27)
\]
when an integral basis is
\[\left\{ 1, \frac{b + \theta}{3}, \frac{R + S\theta + \theta^2}{T} \right\}. \]

3. Examples

Example 3.1. Let \(K = \mathbb{Q}(\theta) \), where \(\theta^3 - \theta + 4 = 0 \). Here \(a = 1 \) and \(b = 4 \). Then \(\Delta = -2^2 \cdot 107 \). Hence \(s_2 = 2 \), \(s_{107} = 1 \) and \(s_p = 0 \) for every rational prime \(p \neq 2, 107 \). So \(R_2 = 0, S_2 = 1 \) and \(T_2 = 1 \). Therefore \(R = 0, S = 1 \) and \(T = 2 \). Hence \(\{1, \theta, (\theta + \theta^2)/2\} \) is an integral basis of \(K \) and \(d(K) = -107 \).

Example 3.2. Let \(K = \mathbb{Q}(\theta) \), where \(\theta^3 - 255\theta + 3850 = 0 \). Here \(a = 255 \) and \(b = 3850 \). Then \(\Delta = -2^4 \cdot 3^6 \cdot 5^3 \cdot 229 \). So, \(R_2 = 2, S_2 = -1, T_2 = 1, R_3 = 1, S_3 = 2, T_3 = 2, R_5 = 0, S_5 = 0 \), and \(T_5 = 1 \). Therefore \(R = 10, S = -25 \), and \(T = 90 \). Hence \(\{1, (3850 + \theta)/3, (10 - 25\theta + \theta^2)/90\} \) is an integral basis of \(K \), and \(d(K) = -2^2 \cdot 5 \cdot 229 \).

Example 3.3. Let \(K = \mathbb{Q}(\beta) \), where \(\beta^3 - \beta^2 - 82\beta + 311 = 0 \). Set \(\theta = 3\beta - 1 \). Then \(K = \mathbb{Q}(\beta) = \mathbb{Q}(\theta) \), and \(\theta^3 - 741\theta + 7657 = 0 \). Hence, \(\Delta = 3^6 \cdot 13^2 \cdot 19^2 \). Then \(R_3 = 1, S_3 = 2 \), and \(T_3 = 2 \). Therefore, \(R, S, \) and \(T \) can be taken as \(R = 1, S = 1 \) and \(T = 3^2 \). Hence
\[\{1, (1 + \theta)/3, (1 + 2\theta + \theta^2)/3^2\} = \{1, \beta, \beta^2\} \]

is an integral basis of \(K \), and \(d(K) = 13^2 \cdot 19^2 \).

References

1. Ş. Alaca, \(p \)-Integral Bases of Algebraic Number Fields, submitted for publication.

Centre for Research in Algebra and Number Theory, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

E-mail address: salaca@math.carleton.ca