A new proof of the Solomon-Tits theorem
HTML articles powered by AMS MathViewer
- by Chao Ku
- Proc. Amer. Math. Soc. 126 (1998), 1941-1944
- DOI: https://doi.org/10.1090/S0002-9939-98-04453-0
- PDF | Request permission
Abstract:
We give a new proof of the Solomon-Tits Theorem which asserts that the Tits building of a finite group of Lie type has the homotopy type of a bouquet of spheres.References
- Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1993. Corrected reprint of the 1986 original. MR 1264416
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- C. W. Curtis and G. I. Lehrer, A new proof of a theorem of Solomon-Tits, Proc. Amer. Math. Soc. 85 (1982), no. 2, 154–156. MR 652431, DOI 10.1090/S0002-9939-1982-0652431-1
- Howard Garland, $p$-adic curvature and the cohomology of discrete subgroups of $p$-adic groups, Ann. of Math. (2) 97 (1973), 375–423. MR 320180, DOI 10.2307/1970829
- Louis Solomon, The Steinberg character of a finite group with $BN$-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York, 1969, pp. 213–221. MR 0246951
Bibliographic Information
- Chao Ku
- Affiliation: Department of Mathematics, Caltech Pasadena, California 91125
- Email: chaoku@cco.caltech.edu
- Received by editor(s): December 19, 1996
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1941-1944
- MSC (1991): Primary 20E42
- DOI: https://doi.org/10.1090/S0002-9939-98-04453-0
- MathSciNet review: 1459131