The Kaplansky test problems for $\aleph _1$-separable groups
HTML articles powered by AMS MathViewer
- by Paul C. Eklof and Saharon Shelah
- Proc. Amer. Math. Soc. 126 (1998), 1901-1907
- DOI: https://doi.org/10.1090/S0002-9939-98-04749-2
- PDF | Request permission
Abstract:
We answer a long-standing open question by proving in ordinary set theory, ZFC, that the Kaplansky test problems have negative answers for $\aleph _1$-separable abelian groups of cardinality $\aleph _1$. In fact, there is an $\aleph _1$-separable abelian group $M$ such that $M$ is isomorphic to $M\oplus M\oplus M$ but not to $M\oplus M$. We also derive some relevant information about the endomorphism ring of $M$.References
- A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 13 (1963), 687–710. MR 153743, DOI 10.1112/plms/s3-13.1.687
- A. L. S. Corner, On a conjecture of Pierce concerning direct decompositions of Abelian groups, Proc. Colloq. Abelian Groups (Tihany, 1963) Akadémiai Kiadó, Budapest, 1964, pp. 43–48. MR 0169905
- A. L. S. Corner, On endomorphism rings of primary abelian groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 277–296. MR 258949, DOI 10.1093/qmath/20.1.277
- A. L. S. Corner and Rüdiger Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), no. 3, 447–479. MR 779399, DOI 10.1112/plms/s3-50.3.447
- Manfred Dugas and Rüdiger Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), no. 2, 319–336. MR 670040, DOI 10.1112/plms/s3-45.2.319
- Manfred Dugas and Rüdiger Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), no. 4, 451–470. MR 682667, DOI 10.1007/BF01182384
- Paul C. Eklof, The structure of $\omega _{1}$-separable groups, Trans. Amer. Math. Soc. 279 (1983), no. 2, 497–523. MR 709565, DOI 10.1090/S0002-9947-1983-0709565-8
- Paul C. Eklof, Set theory and structure theorems, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 275–284. MR 722624, DOI 10.1007/BFb0103708
- Paul C. Eklof and Alan H. Mekler, Almost free modules, North-Holland Mathematical Library, vol. 46, North-Holland Publishing Co., Amsterdam, 1990. Set-theoretic methods. MR 1055083
- L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Rüdiger Göbel, An easy topological construction for realising endomorphism rings, Proc. Roy. Irish Acad. Sect. A 92 (1992), no. 2, 281–284. MR 1204227
- R. Göbel and B. Goldsmith, The Kaplansky test problems—an approach via radicals, J. Pure Appl. Algebra 99 (1995), no. 3, 331–344. MR 1332904, DOI 10.1016/0022-4049(93)E0182-4
- Bjarni Jónsson, On direct decompositions of torsion-free abelian groups, Math. Scand. 5 (1957), 230–235. MR 108454, DOI 10.7146/math.scand.a-10499
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- Alan H. Mekler, How to construct almost free groups, Canadian J. Math. 32 (1980), no. 5, 1206–1228. MR 596105, DOI 10.4153/CJM-1980-090-1
- Alan H. Mekler, Proper forcing and abelian groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 285–303. MR 722625, DOI 10.1007/BFb0103709
- Alan H. Mekler, The structure of groups which are almost the direct sum of countable abelian groups, Trans. Amer. Math. Soc. 303 (1987), no. 1, 145–160. MR 896012, DOI 10.1090/S0002-9947-1987-0896012-2
- Saharon Shelah, Kaplansky test problem for $R$-modules, Israel J. Math. 74 (1991), no. 1, 91–127. MR 1135231, DOI 10.1007/BF02777818
- B. Thomé, Aleph-1-separable Groups, Kaplansky’s Test Problems, and Endomorphism Rings, Ph.D. Dissertation, Univ. of California, Irvine (1988).
- Bernhard Thomé, $\aleph _1$-separable groups and Kaplansky’s test problems, Forum Math. 2 (1990), no. 3, 203–212. MR 1050405, DOI 10.1515/form.1990.2.203
Bibliographic Information
- Paul C. Eklof
- Affiliation: Department of Mathematics, University of California, Irvine, California 92697
- Email: peklof@math.uci.edu
- Saharon Shelah
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Address at time of publication: Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@math.huji.ac.il
- Received by editor(s): December 10, 1996
- Additional Notes: Travel supported by NSF Grant DMS-9501415.
Research supported by German-Israeli Foundation for Scientific Research & Development Grant No. G-294.081.06/93. Pub. No. 625. - Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1901-1907
- MSC (1991): Primary 20K20; Secondary 03E35
- DOI: https://doi.org/10.1090/S0002-9939-98-04749-2
- MathSciNet review: 1485469