Discriminants of convex curves are homeomorphic
HTML articles powered by AMS MathViewer
- by B. Shapiro
- Proc. Amer. Math. Soc. 126 (1998), 1923-1930
- DOI: https://doi.org/10.1090/S0002-9939-98-04766-2
- PDF | Request permission
Abstract:
For a given real generic curve $\gamma : S^{1}\to \mathbb {P}^{n}$ let $D_{\gamma }$ denote the ruled hypersurface in $\mathbb {P}^{n}$ consisting of all osculating subspaces to $\gamma$ of codimension 2. In this note we show that for any two convex real projective curves $\gamma _{1}:S^{1}\to \mathbb {P}^{n}$ and $\gamma _{2}:S^{1}\to \mathbb {P}^{n}$ the pairs $(\mathbb {P}^{n},D_{\gamma _{1}})$ and $(\mathbb {P}^{n},D_{\gamma _{2}})$ are homeomorphic.References
- V. Arnol′d, On the number of flattening points on space curves, Sinaĭ’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 11–22. MR 1359089, DOI 10.1090/trans2/171/02
- V. I. Arnol′d, Topological problems in the theory of wave propagation, Uspekhi Mat. Nauk 51 (1996), no. 1(307), 3–50 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 1, 1–47. MR 1392670, DOI 10.1070/RM1996v051n01ABEH002734
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785, DOI 10.1007/BFb0058618
- G. Ishikawa, Developable of a curve and determinacy relative to osculating type, Quart. J. Math., Oxford Ser (2) 46 (184) (1995), 437–451.
- B. Z. Shapiro, Spaces of linear differential equations and flag manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 173–187, 223 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 1, 183–197. MR 1044054, DOI 10.1070/IM1991v036n01ABEH001962
- B. Shapiro, Towards qualitative theory for high order linear ODE, in preparation.
- B. Shapiro and V. Sedykh, On Young hulls of convex curve in $\mathbb {R}^{2n}$, preprint MPI 96-95.
- M. Z. Shapiro, The topology of the space of nondegenerate curves, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 5, 106–126 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 43 (1994), no. 2, 291–310. MR 1252758, DOI 10.1070/IM1994v043n02ABEH001565
Bibliographic Information
- B. Shapiro
- Affiliation: Department of Mathematics, University of Stockholm, S-10691, Sweden
- MR Author ID: 212628
- Email: shapiro@matematik.su.se
- Received by editor(s): December 17, 1996
- Communicated by: Christopher Croke
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1923-1930
- MSC (1991): Primary 14H50
- DOI: https://doi.org/10.1090/S0002-9939-98-04766-2
- MathSciNet review: 1487339