A continuation type result for random operators
HTML articles powered by AMS MathViewer
- by Donal O’Regan
- Proc. Amer. Math. Soc. 126 (1998), 1963-1971
- DOI: https://doi.org/10.1090/S0002-9939-98-04810-2
- PDF | Request permission
Abstract:
Fixed point results of continuation type are presented for random operators. Some applications to stochastic integral equations of Volterra type are also given.References
- Ismat Beg and Naseer Shahzad, Random fixed points of weakly inward operators in conical shells, J. Appl. Math. Stochastic Anal. 8 (1995), no. 3, 261–264. MR 1342645, DOI 10.1155/S1048953395000232
- K. Deimling, G. S. Ladde, and V. Lakshmikantham, Sample solutions of stochastic boundary value problems, Stochastic Anal. Appl. 3 (1985), no. 2, 153–162. MR 790490, DOI 10.1080/07362998508809057
- Andrzej Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 17, Aii, A983–A985. MR 407894
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- Shigeru Itoh, Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 261–273. MR 528687, DOI 10.1016/0022-247X(79)90023-4
- Wiesław Krawcewicz, Contribution à la théorie des équations non linéaires dans les espaces de Banach, Dissertationes Math. (Rozprawy Mat.) 273 (1988), 83 (French). MR 989165
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403 (English, with Russian summary). MR 188994
- Tzu-Chu Lin, Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1129–1135. MR 954994, DOI 10.1090/S0002-9939-1988-0954994-0
- Donal O’Regan, Existence results for nonlinear integral equations, J. Math. Anal. Appl. 192 (1995), no. 3, 705–726. MR 1336473, DOI 10.1006/jmaa.1995.1199
- D. O’Regan, Coincidence principles and fixed point theory for mappings in locally convex spaces, Rocky Mount. J. Mathematics, to appear.
- D. O’Regan, Random fixed point theory for random operators, to appear.
- V. M. Sehgal and Charles Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), no. 3, 425–429. MR 728362, DOI 10.1090/S0002-9939-1984-0728362-7
- Alberto Torchinsky, Real variables, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1988. MR 930882
Bibliographic Information
- Donal O’Regan
- Affiliation: Department Of Mathematics, University College Galway, Galway, Ireland
- MR Author ID: 132880
- Email: donal.oregan@ucg.ie
- Received by editor(s): July 8, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1963-1971
- MSC (1991): Primary 47H40, 60H25
- DOI: https://doi.org/10.1090/S0002-9939-98-04810-2
- MathSciNet review: 1486745