Asymptotics for Sobolev orthogonal polynomials with coherent pairs: The Jacobi case, type 1
HTML articles powered by AMS MathViewer
- by K. Pan
- Proc. Amer. Math. Soc. 126 (1998), 2377-2388
- DOI: https://doi.org/10.1090/S0002-9939-98-04300-7
- PDF | Request permission
Abstract:
Define $P_n(x)$ and $Q_n(x)$ as the $n$th monic orthogonal polynomials with respect to $d\mu$ and $d\nu$ respectively. The pair $\{d\mu ,d\nu \}$ is called a coherent pair if there exist non-zero constants $D_n$ such that \[ Q_n(x)=\frac {P_{n+1}^\prime (x)}{n+1}+D_n\frac {P_n^\prime (x)}{n},\qquad n\ge 1.\] One can divide the coherent pairs into two cases: the Jacobi case and the Laguerre case. There are two types for each case: type 1 and 2. We investigate the asymptotic properties and zero distribution of orthogonal polynomials with respect to Sobolev inner product \[ \langle f,g\rangle =\int _a^b f(x)g(x)d\mu (x)+\lambda \int _a^b f’(x)g’(x)d\nu (x)\] for the coherent pair $\{d\mu ,d\nu \}$: the Jacobi case, type 1.References
- K. J. Bruinsma, M. G. de Bruin and H. G. Meijer, Zero of Sobolev orthogonal polynomials following from coherent pairs, Report of FTMI 95-65, Delft University of Technology, 1995.
- H.-P. Blatt, E. B. Saff, and M. Simkani, Jentzsch-Szegő type theorems for the zeros of best approximants, J. London Math. Soc. (2) 38 (1988), no. 2, 307–316. MR 966302, DOI 10.1112/jlms/s2-38.2.307
- Edgar A. Cohen Jr., Zero distribution and behavior of orthogonal polynomials in the Sobolev space $W^{1,}\,^{2}[-1,\,1]$, SIAM J. Math. Anal. 6 (1975), 105–116. MR 361218, DOI 10.1137/0506011
- A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (1991), no. 2, 151–175. MR 1104157, DOI 10.1016/0021-9045(91)90100-O
- H. G. Meijer, Coherent pairs and zeros of Sobolev-type orthogonal polynomials, Indag. Math. (N.S.) 4 (1993), no. 2, 163–176. MR 1225266, DOI 10.1016/0019-3577(93)90037-Y
- H. G. Meijer, Determination of all coherent pairs of functionals, Report of FTMI 95-41, Delft University of Technology, 1995.
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213
- K. Pan, On Sobolev orthogonal polynomials with coherent pairs: the Jacobi case, J. Comp. and Appl. Math. 79 (1997), 249–262.
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
Bibliographic Information
- K. Pan
- Affiliation: Department of Mathematics, Barry University, Miami Shores, Florida 33161
- Email: pan@euclid.barry.edu
- Received by editor(s): July 24, 1996
- Received by editor(s) in revised form: January 22, 1997
- Communicated by: J. Marshall Ash
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2377-2388
- MSC (1991): Primary 42C05
- DOI: https://doi.org/10.1090/S0002-9939-98-04300-7
- MathSciNet review: 1443401