Convergence of the Poincaré series for some classical Schottky groups
HTML articles powered by AMS MathViewer
- by Vladimir Mityushev
- Proc. Amer. Math. Soc. 126 (1998), 2399-2406
- DOI: https://doi.org/10.1090/S0002-9939-98-04395-0
- PDF | Request permission
Abstract:
The Poincaré $\theta _2$ -series for a multiply connected circular region can be either convergent or divergent absolutely. In this paper we prove a uniform convergence result for such a region.References
- Henri Poincaré, Œuvres. Tome II, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1995 (French). Fonctions fuchsiennes. [Fuchsian functions]; With a preface and a biographical sketch of Poincaré by G. Darboux; Reprint of the 1916 original. MR 1401791
- L.Ford, Automorphic functions, New York, 1929.
- Gustavo Ochoa, Congruences and units of the Burnside ring of dihedral groups, Proceedings of the tenth Spanish-Portuguese conference on mathematics, I (Murcia, 1985) Univ. Murcia, Murcia, 1985, pp. 46–54 (Spanish, with English summary). MR 843122
- Tohru Akaza, Singular sets of some Kleinian groups, Nagoya Math. J. 26 (1966), 127–143. MR 207982, DOI 10.1017/S0027763000011697
- Tohru Akaza and Katsumi Inoue, Limit sets of geometrically finite free Kleinian groups, Tohoku Math. J. (2) 36 (1984), no. 1, 1–16. MR 733614, DOI 10.2748/tmj/1178228898
- M. A. Krasnosel′skiĭ, G. M. Vainikko, P. P. Zabreĭko, Ja. B. Rutickiĭ, and V. Ja. Stecenko, Priblizhennoe reshenie operatornykh uravneniĭ, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0259635
- B.Bojarski, On a boundary value problem of function theory, Soobschenia AN Gruz. SSR 25 (1960), 385–390. (Russian)
- L. G. Michailov, A new class of singular integral equations and its application to differential equations with singular coefficients, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the Russian by M. D. Friedman. MR 0264216
- F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. Translation edited by I. N. Sneddon. MR 0198152
- V. V. Mityushëv, A method of functional equations for boundary value problems of continuous media, Proceedings of the XXV Symposium on Mathematical Physics (Toruń, 1992), 1993, pp. 137–147. MR 1268683, DOI 10.1016/0034-4877(93)90049-K
- V.Mityushev, Solution of linear functional equation with shift into domain in class of analytic functions, Izvestia AN BSSR. Ser. Phys.-Math. 5 (1983) 117. (Russian)
- Vladimir Mityushev, Solution of the Hilbert boundary value problem for a multiply connected domain, Słup. Prace Mat. Przyr. Mat. Fiz. 9A (1994), 37–69. MR 1319540
- V.Mityushev, Hilbert boundary value problem for multiply connected domains, Complex Variables [to appear]
Bibliographic Information
- Vladimir Mityushev
- Affiliation: Department of Mathematics, Pedagogical College, ul.Arciszewskiego 22b, 76-200 Slupsk, Poland
- Received by editor(s): June 2, 1993
- Received by editor(s) in revised form: November 17, 1995, and January 23, 1997
- Communicated by: Albert Baernstein II
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2399-2406
- MSC (1991): Primary 30E25, 30F40, 39B32
- DOI: https://doi.org/10.1090/S0002-9939-98-04395-0
- MathSciNet review: 1452814