On $JB^*$-triples which are M-ideals in their biduals
HTML articles powered by AMS MathViewer
- by Juan Carlos Cabello and Eduardo Nieto
- Proc. Amer. Math. Soc. 126 (1998), 2277-2283
- DOI: https://doi.org/10.1090/S0002-9939-98-04434-7
- PDF | Request permission
Abstract:
The object of this paper is to investigate $JB^*$-triples which are M-ideals in their biduals.References
- T. Barton and Richard M. Timoney, Weak$^\ast$-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, DOI 10.7146/math.scand.a-12160
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509, DOI 10.1007/BFb0063153
- J. C. Cabello, Containing of $l_{1}$ or $c_{0}$ and the best approximation. Collect. Math. 41, 3 (1990) 233-241.
- J. C. Cabello and E. Nieto, On properties of M-ideals. To appear in Rocky Mountain J. Math.
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Seán Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand. 59 (1986), no. 1, 131–142. MR 873493, DOI 10.7146/math.scand.a-12158
- G. Godefroy and N. J. Kalton, The ball topology and its applications, Banach space theory (Iowa City, IA, 1987) Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989, pp. 195–237. MR 983386, DOI 10.1090/conm/085/983386
- G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), no. 1, 13–59. MR 1208038
- G. Godefroy and D. Li, Banach spaces which are $M$-ideals in their bidual have property $(\textrm {u})$, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 2, 361–371 (English, with French summary). MR 1017283, DOI 10.5802/aif.1170
- Gilles Godefroy and Paulette Saab, Quelques espaces de Banach ayant les propriétés (V) ou (V$^\ast$) de A. Pełczyński, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 11, 503–506 (French, with English summary). MR 865871
- Peter Harmand and Åsvald Lima, Banach spaces which are $M$-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), no. 1, 253–264. MR 735420, DOI 10.1090/S0002-9947-1984-0735420-4
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- Daniel Li, Espaces $L$-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodým, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 229–243 (French, with English summary). MR 891618, DOI 10.1093/qmath/38.2.229
- Åsvald Lima, On $M$-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), no. 1, 27–36. MR 642613, DOI 10.1512/iumj.1982.31.31004
- Rafael Payá, Javier Pérez, and Angel Rodríguez, Noncommutative Jordan $C^{\ast }$-algebras, Manuscripta Math. 37 (1982), no. 1, 87–120. MR 649567, DOI 10.1007/BF01239948
- Rafael Payá and David Yost, The two-ball property: transitivity and examples, Mathematika 35 (1988), no. 2, 190–197. MR 986628, DOI 10.1112/S0025579300015187
- David Yost, The $n$-ball properties in real and complex Banach spaces, Math. Scand. 50 (1982), no. 1, 100–110. MR 664511, DOI 10.7146/math.scand.a-11947
Bibliographic Information
- Juan Carlos Cabello
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Email: jcabello@goliat.ugr.es
- Eduardo Nieto
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Received by editor(s): July 19, 1995
- Received by editor(s) in revised form: January 2, 1997
- Additional Notes: This research was partially supported by M.E.C., Project No. PB96/1406.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2277-2283
- MSC (1991): Primary 46B20; Secondary 17C65
- DOI: https://doi.org/10.1090/S0002-9939-98-04434-7
- MathSciNet review: 1459113