On the Mergelyan approximation property on pseudoconvex domains in $\mathbb C^n$
HTML articles powered by AMS MathViewer
- by Sanghyun Cho
- Proc. Amer. Math. Soc. 126 (1998), 2285-2289
- DOI: https://doi.org/10.1090/S0002-9939-98-04435-9
- PDF | Request permission
Abstract:
Let $\Omega$ be a smoothly bounded pseudoconvex domain of finite type in $\mathbb {C}^{n}$. We prove the Mergelyan approximation property in various topologies on $\Omega$ when the estimates for $\overline {\partial }$-equation are known in the corresponding topologies.References
- David W. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39–49. MR 740870, DOI 10.1090/pspum/041/740870
- D.-C. Chang, A. Nagel, and E. M. Stein, Estimates for the $\overline \partial$-Neumann problem in pseudoconvex domains of finite type in $\textbf {C}^2$, Acta Math. 169 (1992), no. 3-4, 153–228. MR 1194003, DOI 10.1007/BF02392760
- Sanghyun Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), no. 1, 105–119. MR 1179783, DOI 10.1007/BF02571421
- Hong Rae Cho, Sanghyun Cho, and Kwang Ho Shon, Stability of the estimates for $\overline \partial$-equation on compact pseudoconvex complex manifolds, Kyushu J. Math. 48 (1994), no. 1, 19–34. MR 1269064, DOI 10.2206/kyushujm.48.19
- Cho, H.R. and Cho, S., Holomorphic approximation on compact pseudoconvex complex manifolds, J. of Geom. Anal. (to appear).
- Cho, S., Ahn, H. and Kim, S., Stability of Hölder estimates for $\overline {\partial }$ on pseudoconvex domains of finite type in $\mathbb {C}^{2}$, Nagoya Math. J. (to appear).
- Charles L. Fefferman and Joseph J. Kohn, Hölder estimates on domains of complex dimension two and on three-dimensional CR manifolds, Adv. in Math. 69 (1988), no. 2, 223–303. MR 946264, DOI 10.1016/0001-8708(88)90002-3
- C. L. Fefferman, J. J. Kohn, and M. Machedon, Hölder estimates on CR manifolds with a diagonalizable Levi form, Adv. Math. 84 (1990), no. 1, 1–90. MR 1075233, DOI 10.1016/0001-8708(90)90036-M
- G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. (N.S.) 78 (120) (1969), 611–632 (Russian). MR 0249660
- Norberto Kerzman, Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. MR 281944, DOI 10.1002/cpa.3160240303
- Ingo Lieb, Ein Approximationssatz auf streng pseudokonvexen Gebieten, Math. Ann. 184 (1969), 56–60 (German). MR 262540, DOI 10.1007/BF01350615
- R. Michael Range, Integral kernels and Hölder estimates for $\overline \partial$ on pseudoconvex domains of finite type in $\textbf {C}^2$, Math. Ann. 288 (1990), no. 1, 63–74. MR 1070924, DOI 10.1007/BF01444521
Bibliographic Information
- Sanghyun Cho
- Affiliation: Department of Mathematics, Sogang University, C.P.O. Box 1142, Seoul 121-742, Korea
- Email: shcho@ccs.sogang.ac.kr
- Received by editor(s): January 7, 1997
- Additional Notes: The author was partially supported by Basic Sci. Res. fund BSRI-97-1411, and by GARC-KOSEF, 1997.
- Communicated by: Steven R. Bell
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2285-2289
- MSC (1991): Primary 32F20, 32H40
- DOI: https://doi.org/10.1090/S0002-9939-98-04435-9
- MathSciNet review: 1459114