Some structure of Borel locales
HTML articles powered by AMS MathViewer
- by John Isbell
- Proc. Amer. Math. Soc. 126 (1998), 2477-2479
- DOI: https://doi.org/10.1090/S0002-9939-98-04448-7
- PDF | Request permission
Abstract:
All Borel classes of sublocales of the real line after the first ambiguous class (in particular, the limit ambiguous classes) have proper (=irreducible) representatives.References
- John Isbell, First steps in descriptive theory of locales, Trans. Amer. Math. Soc. 327 (1991), no. 1, 353–371. MR 1091230, DOI 10.1090/S0002-9947-1991-1091230-6
- John Isbell, Some problems in descriptive locale theory, Category theory 1991 (Montreal, PQ, 1991) CMS Conf. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 1992, pp. 243–265. MR 1192150
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Till Plewe, Localic products of spaces, Proc. London Math. Soc. (3) 73 (1996), no. 3, 642–678. MR 1407464, DOI 10.1112/plms/s3-73.3.642
Bibliographic Information
- John Isbell
- Affiliation: Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214
- Email: ji2@acsu.buffalo.edu
- Received by editor(s): January 6, 1997
- Communicated by: Alan Dow
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2477-2479
- MSC (1991): Primary 54A05, 54H05; Secondary 04A15
- DOI: https://doi.org/10.1090/S0002-9939-98-04448-7
- MathSciNet review: 1459126