Differential forms on quotients by reductive group actions
HTML articles powered by AMS MathViewer
- by Michel Brion
- Proc. Amer. Math. Soc. 126 (1998), 2535-2539
- DOI: https://doi.org/10.1090/S0002-9939-98-04320-2
- PDF | Request permission
Abstract:
Let $X$ be a smooth affine algebraic variety where a reductive algebraic group $G$ acts with a smooth quotient space $Y=X//G$. We show that the algebraic differential forms on $X$ which are pull-backs of forms on $Y$ are exactly the $G$-invariant horizontal differential forms on $X$.References
- Michel Brion, Sur les modules de covariants, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 1–21 (French, with English and French summaries). MR 1209911, DOI 10.24033/asens.1665
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, DOI 10.1007/BF01467074
- Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975, DOI 10.1007/978-3-663-14074-0
- Domingo Luna, Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Mém. 33, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 0342523, DOI 10.24033/msmf.110
- D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238 (French). MR 376704, DOI 10.1007/BF01389851
- D. Luna and R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), no. 3, 487–496. MR 544240, DOI 10.1215/S0012-7094-79-04623-4
- Peter W. Michor, Basic differential forms for actions of Lie groups, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1633–1642. MR 1307550, DOI 10.1090/S0002-9939-96-03195-4
- Peter W. Michor: Basic differential forms for actions of Lie groups II, Proc. Amer. Math. Soc. 125 (1997), 2175–2177.
- È. B. Vinberg and V. L. Popov, Invariant theory, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137–314, 315 (Russian). MR 1100485
- Louis Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57–64. MR 154929, DOI 10.1017/S0027763000011028
Bibliographic Information
- Michel Brion
- Affiliation: Institut Fourier, B. P. 74, 38402 Saint-Martin d’Hères Cedex, France
- MR Author ID: 41725
- Email: mbrion@fourier.ujf-grenoble.fr
- Received by editor(s): October 25, 1996
- Received by editor(s) in revised form: January 29, 1997
- Communicated by: Roe Goodman
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2535-2539
- MSC (1991): Primary 14L30, 22E99
- DOI: https://doi.org/10.1090/S0002-9939-98-04320-2
- MathSciNet review: 1451789