A structural result of irreducible inclusions of type $\operatorname {III}_\lambda$ factors, $\lambda \in (0,1)$
HTML articles powered by AMS MathViewer
- by Phan H. Loi
- Proc. Amer. Math. Soc. 126 (1998), 2651-2662
- DOI: https://doi.org/10.1090/S0002-9939-98-04349-4
- PDF | Request permission
Abstract:
Given an irreducible inclusion of factors with finite index $N\subset M$, where $M$ is of type ${III}_{\lambda ^{1/m}}$, $N$ of type ${III}_{\lambda ^{1/n}}$, $0<\lambda <1$, and $m,n$ are relatively prime positive integers, we will prove that if $N\subset M$ satisfies a commuting square condition, then its structure can be characterized by using fixed point algebras and crossed products of automorphisms acting on the middle inclusion of factors associated with $N\subset M$. Relations between $N\subset M$ and a certain $G$-kernel on subfactors are also discussed.References
- Dietmar Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), no. 2, 201–216. MR 1262294, DOI 10.2140/pjm.1994.163.201
- Dietmar Bisch and Uffe Haagerup, Composition of subfactors: new examples of infinite depth subfactors, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 3, 329–383. MR 1386923, DOI 10.24033/asens.1742
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115, DOI 10.24033/asens.1247
- Alain Connes and Masamichi Takesaki, The flow of weights on factors of type $\textrm {III}$, Tohoku Math. J. (2) 29 (1977), no. 4, 473–575. MR 480760, DOI 10.2748/tmj/1178240493
- J. Dixmier and O. Maréchal, Vecteurs totalisateurs d’une algèbre de von Neumann, Comm. Math. Phys. 22 (1971), 44–50 (French, with English summary). MR 296708, DOI 10.1007/BF01651583
- Jean-François Havet, Espérance conditionnelle minimale, J. Operator Theory 24 (1990), no. 1, 33–55 (French). MR 1086543
- Fumio Hiai, Minimizing indices of conditional expectations onto a subfactor, Publ. Res. Inst. Math. Sci. 24 (1988), no. 4, 673–678. MR 976765, DOI 10.2977/prims/1195174872
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3
- Daniele Guido and Roberto Longo, Relativistic invariance and charge conjugation in quantum field theory, Comm. Math. Phys. 148 (1992), no. 3, 521–551. MR 1181069, DOI 10.1007/BF02096548
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type $\textrm {II}_{1}$ factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. MR 587749, DOI 10.1090/memo/0237
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Yasuyuki Kawahigashi, Classification of paragroup actions in subfactors, Publ. Res. Inst. Math. Sci. 31 (1995), no. 3, 481–517. MR 1355948, DOI 10.2977/prims/1195164051
- Hideki Kosaki, Extension of Jones’ theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), no. 1, 123–140. MR 829381, DOI 10.1016/0022-1236(86)90085-6
- Hideki Kosaki and Roberto Longo, A remark on the minimal index of subfactors, J. Funct. Anal. 107 (1992), no. 2, 458–470. MR 1172035, DOI 10.1016/0022-1236(92)90118-3
- Roberto Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys. 126 (1989), no. 2, 217–247. MR 1027496, DOI 10.1007/BF02125124
- Phan H. Loi, On the theory of index for type III factors, J. Operator Theory 28 (1992), no. 2, 251–265. MR 1273045
- —, On automorphisms of subfactors, J. Func. Anal. 141 (1996), 275–293.
- Phan H. Loi, Periodic and strongly free automorphisms on inclusions of type III$_\lambda$ factors, Internat. J. Math. 8 (1997), no. 1, 83–96. MR 1433202, DOI 10.1142/S0129167X97000056
- Adrian Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 807949, DOI 10.1007/BFb0098579
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811, DOI 10.24033/asens.1504
- Sorin Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163–255. MR 1278111, DOI 10.1007/BF02392646
- —, Classification of actions of discrete amenable groups on amenable subfactors of type $\mathrm {II}$, preprint (1992).
- Takashi Sano and Yasuo Watatani, Angles between two subfactors, J. Operator Theory 32 (1994), no. 2, 209–241. MR 1338739
- Colin E. Sutherland, Cohomology and extensions of von Neumann algebras. I, II, Publ. Res. Inst. Math. Sci. 16 (1980), no. 1, 105–133, 135–174. MR 574031, DOI 10.2977/prims/1195187501
- Masamichi Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306–321. MR 0303307, DOI 10.1016/0022-1236(72)90004-3
- J. Wiezbicki, An estimate of the depth from an intermediate subfactor, to appear in Publ. RIMS., Kyoto Univ.
Bibliographic Information
- Phan H. Loi
- Affiliation: Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435
- Email: ploi@desire.wright.edu
- Received by editor(s): June 17, 1996
- Received by editor(s) in revised form: January 28, 1997
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2651-2662
- MSC (1991): Primary 46L10, 46L55
- DOI: https://doi.org/10.1090/S0002-9939-98-04349-4
- MathSciNet review: 1451818