Collapsible polyhedra and median spaces
HTML articles powered by AMS MathViewer
- by M. van de Vel
- Proc. Amer. Math. Soc. 126 (1998), 2811-2818
- DOI: https://doi.org/10.1090/S0002-9939-98-04413-X
- PDF | Request permission
Abstract:
It is shown that a collapsible, compact, connected, simplicial polyhedron admits a cubical subdivision and a median convexity, such that all cubes are convex subspaces with a convexity of subcubes. Conversely, a compact, connected, cubical polyhedron with a convexity as described admits a collapsible simplicial subdivision. Such a convexity, when it exists, is uniquely determined by the corresponding cubical presentation. Some related open problems have been formulated.References
- Hans-J. Bandelt and Jarmila Hedlíková, Median algebras, Discrete Math. 45 (1983), no. 1, 1–30. MR 700848, DOI 10.1016/0012-365X(83)90173-5
- R. H. Bing, The geometric topology of 3-manifolds, American Mathematical Society Colloquium Publications, vol. 40, American Mathematical Society, Providence, RI, 1983. MR 728227, DOI 10.1090/coll/040
- G. Birkhoff, S. A. Kiss, A ternary operator in distributive lattices, Bull. Amer. Math. Soc., 53 (1947), 749–752.
- Victor Chepoi, A multifacility location problem on median spaces, Discrete Appl. Math. 64 (1996), no. 1, 1–29. MR 1367177, DOI 10.1016/0166-218X(95)00115-8
- V. D. Chepoi, F. F. Dragan, Computing a median point of a simple rectilinear polygon, Inform. Process. Lett., 49 (1994), 281–285.
- J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65–76. MR 182949, DOI 10.1007/BF02566944
- John R. Isbell, Median algebra, Trans. Amer. Math. Soc. 260 (1980), no. 2, 319–362. MR 574784, DOI 10.1090/S0002-9947-1980-0574784-8
- Jie Hua Mai and Yun Tang, An injective metrization for collapsible polyhedra, Proc. Amer. Math. Soc. 88 (1983), no. 2, 333–337. MR 695270, DOI 10.1090/S0002-9939-1983-0695270-9
- Jan van Mill and Alexander Schrijver, Subbase characterizations of compact topological spaces, General Topology Appl. 10 (1979), no. 2, 183–201. MR 527844, DOI 10.1016/0016-660x(79)90007-2
- J. van Mill and M. van de Vel, Convexity preserving mappings in subbase convexity theory, Nederl. Akad. Wetensch. Proc. Ser. A 40 (1978), no. 1, 76–90. MR 488568, DOI 10.1016/1385-7258(78)90025-2
- H. M. Mulder, The interval function of a graph, Mathematical Centre Tracts, vol. 132, Mathematisch Centrum, Amsterdam, 1980. MR 605838
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- John R. Stallings, Lectures on polyhedral topology, Tata Institute of Fundamental Research Lectures on Mathematics, No. 43, Tata Institute of Fundamental Research, Bombay, 1967. Notes by G. Ananda Swarup. MR 0238329
- M. van de Vel, Matching binary convexities, Topology Appl. 16 (1983), no. 3, 207–235. MR 722115, DOI 10.1016/0166-8641(83)90019-6
- M. L. J. van de Vel, Theory of convex structures, North-Holland Mathematical Library, vol. 50, North-Holland Publishing Co., Amsterdam, 1993. MR 1234493
- E. R. Verheul, Modular metric spaces, Report WS-358 (1989).
- E. R. Verheul, Modular normed spaces, Report WS-365 (1990).
- E. R. Verheul, Multimedians in metric and normed spaces, CWI Tract, vol. 91, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1993. MR 1244813
Bibliographic Information
- M. van de Vel
- Affiliation: Fakulteit Wiskunde en Informatika, Vrije Universiteit, NL-1081 HV Amsterdam, the Netherlands
- Email: marcel@cs.vu.nl
- Received by editor(s): February 22, 1996
- Received by editor(s) in revised form: February 5, 1997
- Communicated by: Christopher Croke
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2811-2818
- MSC (1991): Primary 57Q99, 52A01; Secondary 05C99
- DOI: https://doi.org/10.1090/S0002-9939-98-04413-X
- MathSciNet review: 1452832
Dedicated: This paper is dedicated to the memory of my son Wouter, 1974–1993