A bound for the derived and Frattini subgroups of a prime-power group
HTML articles powered by AMS MathViewer
- by Graham Ellis
- Proc. Amer. Math. Soc. 126 (1998), 2513-2523
- DOI: https://doi.org/10.1090/S0002-9939-98-04440-2
- PDF | Request permission
Abstract:
This paper is based on the seemingly new observation that the Schur multiplier $M(G)$ of a $d$-generator group of prime-power order $p^n$ has order $|M(G)|\le p^{d(2n-d-1)/2}$. We prove several related results, including sufficient conditions for a sharper bound on $|M(G)|$ to be an equality.References
- Ronald Brown and Jean-Louis Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311–335. With an appendix by M. Zisman. MR 899052, DOI 10.1016/0040-9383(87)90004-8
- J. Burns, G. Ellis, D. MacHale, P. Ó′Murchú, R. Sheehy, and J. Wiegold, Lower central series of groups with small upper central factors, Proc. Royal Irish Acad. (to appear).
- Daniel Conduché and Celso Rodríguez-Fernández, Nonabelian tensor and exterior products modulo $q$ and universal $q$-central relative extension, J. Pure Appl. Algebra 78 (1992), no. 2, 139–160. MR 1161338, DOI 10.1016/0022-4049(92)90092-T
- Graham J. Ellis, Tensor products and $q$-crossed modules, J. London Math. Soc. (2) 51 (1995), no. 2, 243–258. MR 1325569, DOI 10.1112/jlms/51.2.243
- G. J. Ellis and C. Rodríguez-Fernández, An exterior product for the homology of groups with integral coefficients modulo $p$, Cahiers Topologie Géom. Différentielle Catég. 30 (1989), no. 4, 339–343 (English, with French summary). MR 1036346
- W. Gaschütz, J. Neubüser, and Ti Yen, Über den Multiplikator von $p$-Gruppen, Math. Z. 100 (1967), 93–96 (German). MR 217181, DOI 10.1007/BF01110785
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Graham Higman, Enumerating $p$-groups. I. Inequalities, Proc. London Math. Soc. (3) 10 (1960), 24–30. MR 113948, DOI 10.1112/plms/s3-10.1.24
- Michael R. Jones, Multiplicators of $p$-groups, Math. Z. 127 (1972), 165–166. MR 318304, DOI 10.1007/BF01112608
- Michael R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc. 39 (1973), 450–456. MR 314975, DOI 10.1090/S0002-9939-1973-0314975-6
- Michael R. Jones, Some inequalities for the multiplicator of a finite group. II, Proc. Amer. Math. Soc. 45 (1974), 167–172. MR 352254, DOI 10.1090/S0002-9939-1974-0352254-2
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. reine angew. Math. 127 (1904), 20–50.
- Charles C. Sims, Enumerating $p$-groups, Proc. London Math. Soc. (3) 15 (1965), 151–166. MR 169921, DOI 10.1112/plms/s3-15.1.151
- Michio Suzuki, Group theory. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR 815926, DOI 10.1007/978-3-642-86885-6
- M. R. Vaughan-Lee, Breadth and commutator subgroups of $p$-groups, J. Algebra 32 (1974), 278–285. MR 364436, DOI 10.1016/0021-8693(74)90138-0
- James Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z. 89 (1965), 345–347. MR 179262, DOI 10.1007/BF01112166
Bibliographic Information
- Graham Ellis
- Affiliation: Department of Mathematics, University College, Galway, Ireland
- Address at time of publication: Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, Bonn, Germany
- Email: graham.ellis@ucg.ie
- Received by editor(s): January 27, 1997
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2513-2523
- MSC (1991): Primary 20J05
- DOI: https://doi.org/10.1090/S0002-9939-98-04440-2
- MathSciNet review: 1459119