The maximal normal $p$-subgroup of the automorphism group of an abelian $p$-group
HTML articles powered by AMS MathViewer
- by Jutta Hausen and Phillip Schultz
- Proc. Amer. Math. Soc. 126 (1998), 2525-2533
- DOI: https://doi.org/10.1090/S0002-9939-98-04496-7
- PDF | Request permission
Abstract:
Let $p$ be a prime number and let $G$ be an abelian $p$–group. Let $\Delta$ be the maximal normal $p$–subgroup of $\operatorname {Aut}G$ and $\zeta$ the maximal $p$–subgroup of its centre. Let $\mathbf {t}$ be the torsion radical of ${\mathcal {E}}(G)$. Then $\Delta =(1+\mathbf {t})\zeta$. The result is new for $p=2$ and 3, and the proof is new and valid for all primes $p$.References
- R. P. Abraham, Normal $p$–subgroups of the Automorphism Group of an Abelian $p$–group, Journal of Algebra (to appear).
- Haya Freedman, The automorphisms of countable primary reduced Abelian groups, Proc. London Math. Soc. (3) 12 (1962), 77–99. MR 133381, DOI 10.1112/plms/s3-12.1.77
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Jutta Hausen, Near central automorphisms of abelian torsion groups, Trans. Amer. Math. Soc. 174 (1972), 199–215. MR 310090, DOI 10.1090/S0002-9947-1972-0310090-X
- Jutta Hausen, On the normal structure of automorphism groups of Abelian $p$-groups, J. London Math. Soc. (2) 5 (1972), 409–413. MR 323922, DOI 10.1112/jlms/s2-5.3.409
- Jutta Hausen, How automorphism groups reveal Ulm invariants, J. Algebra 44 (1977), no. 1, 9–28. MR 442111, DOI 10.1016/0021-8693(77)90165-X
- Jutta Hausen and Johnny A. Johnson, Characterization of the primary abelian groups, bounded modulo the divisible subgroup, by the radical of their endomorphism rings, Arch. Math. (Basel) 29 (1977), no. 6, 566–570. MR 466351, DOI 10.1007/BF01220454
- Jutta Hausen, Cheryl E. Praeger, and Phillip Schultz, Most abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings, Math. Z. 216 (1994), no. 3, 431–436. MR 1283080, DOI 10.1007/BF02572332
- Paul Hill, The automorphisms of primary abelian groups, Proc. London Math. Soc. (3) 22 (1971), 24–38. MR 281794, DOI 10.1112/plms/s3-22.1.24
- Horst Leptin, Abelsche $p$-Gruppen und ihre Automorphismengruppen, Math. Z. 73 (1960), 235–253 (German). MR 0109845, DOI 10.1007/BF01159715
- H. Leptin, Einige Bemerkungen über die Automorphismen Abelscher $p$-Gruppen, Proc. Colloq. Abelian Groups (Tihany, 1963) Akadémiai Kiadó, Budapest, 1964, pp. 99–104 (German). MR 0168671
- Wolfgang Liebert, Isomorphic automorphism groups of primary abelian groups, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp. 9–31. MR 1011303
- R. S. Pierce, Homomorphisms of primary abelian groups, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 215–310. MR 0177035
- Cheryl E. Praeger and Phillip Schultz, The Loewy length of the Jacobson radical of a bounded endomorphism ring, Abelian groups and noncommutative rings, Contemp. Math., vol. 130, Amer. Math. Soc., Providence, RI, 1992, pp. 349–360. MR 1176131, DOI 10.1090/conm/130/1176131
- Derek John Scott Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York-Berlin, 1982. MR 648604, DOI 10.1007/978-1-4684-0128-8
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 0344216, DOI 10.1007/978-1-4684-9884-4
- K. Shoda, Über die Automorphismen einer endlichen abelschen Gruppe, Math. Ann. 100 (1928), 674–686.
Bibliographic Information
- Jutta Hausen
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3476
- Email: hausen@uh.edu
- Phillip Schultz
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3476; Department of Mathematics, University of Western Australia, Nedlands 6009, Australia
- MR Author ID: 157160
- Email: schultz@maths.uwa.edu.au
- Received by editor(s): January 28, 1997
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2525-2533
- MSC (1991): Primary 20K10, 20F28, 20K30
- DOI: https://doi.org/10.1090/S0002-9939-98-04496-7
- MathSciNet review: 1458876