Character degrees and local subgroups of $\pi$-separable groups
HTML articles powered by AMS MathViewer
- by Gabriel Navarro and Thomas Wolf
- Proc. Amer. Math. Soc. 126 (1998), 2599-2605
- DOI: https://doi.org/10.1090/S0002-9939-98-04507-9
- PDF | Request permission
Abstract:
Let $G$ be a finite $\{p,q \}$-solvable group for different primes $p$ and $q$. Let $P \in \text {Syl}_{p}(G)$ and $Q \in \text {Syl}_{q}(G)$ be such that $PQ=QP$. We prove that every $\chi \in \text {Irr}(G)$ of $p^{\prime }$-degree has $q^{\prime }$-degree if and only if $\mathbf {N}_{G}(P) \subseteq \mathbf {N}_{G}(Q)$ and $\mathbf {C}_{Q^{\prime }}(P)=1$.References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- A. Beltrán and G. Navarro, Actions and invariant character degrees III, J. Algebra 191, (1997), 141-148.
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594–635. MR 332945, DOI 10.2307/2373731
- Gabriel Navarro, Actions and invariant character degrees, J. Algebra 160 (1993), no. 1, 172–178. MR 1237082, DOI 10.1006/jabr.1993.1182
- Olaf Manz and Thomas R. Wolf, Representations of solvable groups, London Mathematical Society Lecture Note Series, vol. 185, Cambridge University Press, Cambridge, 1993. MR 1261638, DOI 10.1017/CBO9780511525971
- Roger William Carter, Some aspects of the representation theory of finite groups of Lie type, Oxford University, Mathematical Institute, Oxford, 1979. MR 578000
- Thomas R. Wolf, Characters of $p’$-degree in solvable groups, Pacific J. Math. 74 (1978), no. 1, 267–271. MR 470055, DOI 10.2140/pjm.1978.74.267
- Thomas R. Wolf, Variations on McKay’s character degree conjecture, J. Algebra 135 (1990), no. 1, 123–138. MR 1076081, DOI 10.1016/0021-8693(90)90153-F
Bibliographic Information
- Gabriel Navarro
- Affiliation: Departament d’Algebra, Facultat de Matemátiques, Universitat de València, 46100 Burjassot, València, Spain
- MR Author ID: 129760
- Email: gabriel@uv.es
- Thomas Wolf
- Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701
- Email: wolf@bing.math.ohiou.edu
- Received by editor(s): February 13, 1997
- Additional Notes: The first author is partially supported by DGICYT
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2599-2605
- MSC (1991): Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-98-04507-9
- MathSciNet review: 1458256