## Continuity of Lie mappings of the skew elements of Banach algebras with involution

HTML articles powered by AMS MathViewer

- by M. I. Berenguer and A. R. Villena PDF
- Proc. Amer. Math. Soc.
**126**(1998), 2717-2720 Request permission

## Abstract:

Let $A$ and $B$ be centrally closed prime complex Banach algebras with linear involution. If $A$ is semisimple, then any Lie derivation of the skew elements of $A$ is continuous and any Lie isomorphism from the skew elements of $B$ onto the skew elements of $A$ is continuous.## References

- K. I. Beĭdar, W. S. Martindale III, and A. V. Mikhalëv,
*Lie isomorphisms in prime rings with involution*, J. Algebra**169**(1994), no. 1, 304–327. MR**1296596**, DOI 10.1006/jabr.1994.1286 - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR**1009162** - Pierre de la Harpe,
*Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space*, Lecture Notes in Mathematics, Vol. 285, Springer-Verlag, Berlin-New York, 1972. MR**0476820**, DOI 10.1007/BFb0071306 - I. N. Herstein,
*Topics in ring theory*, University of Chicago Press, Chicago, Ill.-London, 1969. MR**0271135** - B. E. Johnson,
*The uniqueness of the (complete) norm topology*, Bull. Amer. Math. Soc.**73**(1967), 537–539. MR**211260**, DOI 10.1090/S0002-9904-1967-11735-X - Wallace S. Martindale III,
*Lie isomorphisms of prime rings*, Trans. Amer. Math. Soc.**142**(1969), 437–455. MR**251077**, DOI 10.1090/S0002-9947-1969-0251077-5 - Martin Mathieu,
*Elementary operators on prime $C^*$-algebras. I*, Math. Ann.**284**(1989), no. 2, 223–244. MR**1000108**, DOI 10.1007/BF01442873 - T. J. Ransford,
*A short proof of Johnson’s uniqueness-of-norm theorem*, Bull. London Math. Soc.**21**(1989), no. 5, 487–488. MR**1005828**, DOI 10.1112/blms/21.5.487 - Gordon A. Swain,
*Lie derivations of the skew elements of prime rings with involution*, J. Algebra**184**(1996), no. 2, 679–704. MR**1409235**, DOI 10.1006/jabr.1996.0281 - A. R. Villena,
*Essentially defined derivations on semisimple Banach algebras*, Proc. Edinburgh Math. Soc. (2)**40**(1997), no. 1, 175–179. MR**1437821**, DOI 10.1017/S0013091500023531

## Additional Information

**M. I. Berenguer**- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
**A. R. Villena**- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Email: avillena@goliat.ugr.es
- Received by editor(s): February 7, 1997
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 2717-2720 - MSC (1991): Primary 46H40, 17B40
- DOI: https://doi.org/10.1090/S0002-9939-98-04569-9
- MathSciNet review: 1469400