Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Nonsymmetric Osserman indefinite Kähler manifolds
HTML articles powered by AMS MathViewer

by A. Bonome, R. Castro, E. García-Río, L. Hervella and R. Vázquez-Lorenzo PDF
Proc. Amer. Math. Soc. 126 (1998), 2763-2769 Request permission

Abstract:

The authors prove the existence of Osserman manifolds with indefinite Kähler metric of nonnegative or nonpositive holomorphic sectional curvature which are not locally symmetric.
References
Similar Articles
Additional Information
  • A. Bonome
  • Affiliation: Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
  • R. Castro
  • Affiliation: Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
  • E. García-Río
  • Affiliation: Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
  • MR Author ID: 291968
  • ORCID: 0000-0003-1195-1664
  • Email: eduardo@zmat.usc.es
  • L. Hervella
  • Affiliation: Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
  • R. Vázquez-Lorenzo
  • Affiliation: Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
  • Received by editor(s): January 28, 1997
  • Additional Notes: Supported by projects DGICYT PB940633C0201 and XUGA 20702B96, Spain
  • Communicated by: Christopher Croke
  • © Copyright 1998 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 126 (1998), 2763-2769
  • MSC (1991): Primary 53B30, 53C15, 53C50, 53C55
  • DOI: https://doi.org/10.1090/S0002-9939-98-04659-0
  • MathSciNet review: 1476121