Nonsymmetric Osserman pseudo-Riemannian manifolds
HTML articles powered by AMS MathViewer
- by E. García-Río, M. E. Vázquez-Abal and R. Vázquez-Lorenzo
- Proc. Amer. Math. Soc. 126 (1998), 2771-2778
- DOI: https://doi.org/10.1090/S0002-9939-98-04666-8
- PDF | Request permission
Abstract:
Examples of Osserman pseudo–Riemannian manifolds with metric of any signature $(p,q)$, $p$, $q$ $>1$ which are not locally symmetric are exhibited.References
- Manuel Barros and Alfonso Romero, Indefinite Kähler manifolds, Math. Ann. 261 (1982), no. 1, 55–62. MR 675207, DOI 10.1007/BF01456410
- Novica Blažić, Neda Bokan, and Peter Gilkey, A note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), no. 2, 227–230. MR 1426003, DOI 10.1112/S0024609396002238
- Quo-Shin Chi, A curvature characterization of certain locally rank-one symmetric spaces, J. Differential Geom. 28 (1988), no. 2, 187–202. MR 961513
- Quo-Shin Chi, Quaternionic Kaehler manifolds and a curvature characterization of two-point homogeneous spaces, Illinois J. Math. 35 (1991), no. 3, 408–418. MR 1103675
- Quo-Shin Chi, Curvature characterization and classification of rank-one symmetric spaces, Pacific J. Math. 150 (1991), no. 1, 31–42. MR 1120711, DOI 10.2140/pjm.1991.150.31
- P. M. Gadea and A. Montesinos Amilibia, Spaces of constant para-holomorphic sectional curvature, Pacific J. Math. 136 (1989), no. 1, 85–101. MR 971936, DOI 10.2140/pjm.1989.136.85
- Eduardo García-Río and Demir N. Kupeli, Four-dimensional Osserman Lorentzian manifolds, New developments in differential geometry (Debrecen, 1994) Math. Appl., vol. 350, Kluwer Acad. Publ., Dordrecht, 1996, pp. 201–211. MR 1377284
- E. García–Río, D. N. Kupeli and M. E. Vázquez–Abal, On a problem of Osserman in Lorentzian geometry, Diff. Geom. Appl. 7 (1997), 85–100.
- Peter Gilkey, Andrew Swann, and Lieven Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 183, 299–320. MR 1348819, DOI 10.1093/qmath/46.3.299
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Robert Osserman, Curvature in the eighties, Amer. Math. Monthly 97 (1990), no. 8, 731–756. MR 1072814, DOI 10.2307/2324577
- Z. Rakić, Rank–2 symmetric Osserman spaces, Bull. Austr. Math. Soc. (to appear).
Bibliographic Information
- E. García-Río
- Affiliation: Departamento de Análise Matemática, Facultade de Matemáticas, 15706 Santiago de Compostela, Spain
- MR Author ID: 291968
- ORCID: 0000-0003-1195-1664
- Email: eduardo@zmat.usc.es
- M. E. Vázquez-Abal
- Affiliation: Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, 15706 Santiago de Compostela, Spain
- Email: meva@zmat.usc.es
- Received by editor(s): January 30, 1997
- Additional Notes: Supported by projects DGICYT PB940633C0201 and XUGA 20702B96, Spain.
- Communicated by: Christopher Croke
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2771-2778
- MSC (1991): Primary 53B30, 53C50
- DOI: https://doi.org/10.1090/S0002-9939-98-04666-8
- MathSciNet review: 1476128