UNIQUENESS IN THE CAUCHY PROBLEMS FOR HIGHER ORDER ELLIPTIC DIFFERENTIAL OPERATORS

WENSHENG WANG

(Communicated by J. Marshall Ash)

Abstract. In this note, we study the uniqueness in Cauchy problems for a class of higher order elliptic differential operators with Lipschitz coefficients. In particular, we prove the uniqueness under assuming the potentials being $L^{r_j}_{loc}$ with certain correct numbers r_j's.

Notation. Let Ω be a domain in \mathbb{R}^d. Suppose $P(x, D) = \sum_{|\alpha|=m} a_\alpha(x)D^\alpha$ is a differential operator of degree m with real functions $a_\alpha(x)$ on Ω. We denote by $P = P(x, \cdot + ik)$ the symbol of $P(x, D)$ and by $N^P(x, k)$ the zero set of $P(x, \cdot + ik)$ for any $(x, k) \in \Omega \times \mathbb{R}^d$. Let's define a subset in $\Omega \times S^{d-1}$:

$$\Sigma_P = \{(x, k) \in \Omega \times S^{d-1} : \sum \frac{dP}{dz_j}(x, \xi + ik) \cdot k_j \neq 0, \det \text{Hess}_C P(x, \xi + ik) \neq 0 \forall \xi \in N^P(x, k)\}$$

where $\text{Hess}_C P = \left(\frac{d^2 P}{dz_j dz_l}\right)$ is the complex Hessian matrix of P, and $z = \xi + ik \in \mathbb{C}^d$.

If u is a function on Ω, we define its normal support $N(\text{supp} u)$ as a subset of $\Omega \times S^{d-1}$. Say $(x, k) \in N(\text{supp} u)$ if there is a neighborhood V of x such that $\psi(y) \leq \psi(x)$ for all $y \in V \cap \text{supp} u$ and $d\psi(x) = \pm k$, where ψ is some smooth function.

Let $s = \frac{2(d+1)}{d+3}$ be the restriction number and s' be its conjugate number. We let $W^{m, 2}_{loc}$ be the Sobolev space of functions whose derivatives up to order m belong to L^2. We have the following theorem.

Theorem. Suppose $P(x, D)$ is an elliptic differential operator with real Lipschitz functions a_α as coefficients on Ω and is of order $m < \frac{d}{2}$. If a function $u \in W^{m, 2}_{loc}(\Omega)$ satisfies

$$|Pu(x)| \leq \sum_{0<\mu\leq m} V_\mu |\nabla^{m-\mu} u|$$

with $V_\mu \in L^{\frac{d}{\mu}}_{loc}(\Omega)$, then $N(\text{supp} u) \subset \Sigma_P$.

Remarks. (1) Actually we will prove that $N(\text{supp} u) \subset \Lambda_P$ where Λ_P is the set of $(x, k) \in \Omega \times S^{d-1}$ such that $N^P(x, k)$ is locally contained in a smooth hypersurface with nonzero Gaussian curvature, which is smaller than Σ_P. In other words, we

Received by the editors May 27, 1993.
1991 Mathematics Subject Classification. Primary 35Jxx.
may replace the assumptions in Σ_P by directly assuming some curvature condition for $N^P_{x,k}$. Σ_P is a natural condition and is easy to verify. But the proof of $\Sigma_P \subset \Lambda_P$ is nontrivial which is essentially shown in Lemma 1 below. For more details, see [3].

(2) When coefficients are constants, this theorem was proved by the author in [3]. When $P(x, D)$ is hyperbolic, under some other curvature assumption for $N^P_{x,k}$, Sogge proves the same result in the case where $V_\mu = 0$ for all $\mu \leq m - 1$; see [2]. In general, if we don’t care about the optimal condition for the potentials, this is an old theorem by Calderon. See [1], [4].

Calderon’s theorem is actually equivalent to the following uniqueness theorem in the Cauchy problem.

Theorem 1. Suppose $P(x, D)$ is an elliptic differential operator with real Lipschitz functions a_α as coefficients on a domain Ω which contains $\mathbb{R}^d \setminus \overline{B(-e_d, \frac{1}{2})}$ and satisfies the conditions

\[
\frac{dP}{dz_d}(0, \xi + ie_d) \neq 0,
\]

\[
\det \text{Hess}_P(0, \xi + ie_d) \neq 0
\]

for all $\xi \in N^P_{(0, e_d)}$, where Hess_P is the complex Hessian matrix of P. Then for any function $u \in W^{m,2}_{\text{loc}}(\Omega)$ satisfying (1) for some $V_\mu \in L^\frac{m}{2}_{\text{loc}}(\Omega)$, u vanishes in a neighborhood of 0 if u vanishes outside $B(-e_d, 1)$.

Let’s first prove our Theorem by assuming Theorem 1.

Proof of the Theorem. Let $(x^0, k^0) \in N(\suppu)$. Suppose $(x^0, k^0) \in \Sigma_P$. By the definition of $N(\suppu)$, there is a little ball B such that $x^0 \in \partial B$ and $u = 0$ in B. Then there is a map F which is the composition of translation, rotation, dilation and Kelvin transformation with respect to x^0 and B such that $F(x^0) = 0$ and $F(k^0) = e_d$. Moreover $u \circ F^{-1} = 0$ outside $B(-e_d, 1)$ and $u \circ F^{-1}$ is defined on a domain Ω which contains $\mathbb{R}^d \setminus \overline{B(-e_d, \frac{1}{2})}$. Let $v(y) = u \circ F^{-1}(y)$. Then v satisfies the following differential inequality by (1):

\[
|Q(y, D)v(y)| \leq \sum_{0 < \mu \leq m} V^1_\mu(y)|\nabla^{m-\mu} v(y)|
\]

where $Q(y, \eta) = P(F^{-1}(y), (DF^{-1}(y))^{-1}\eta)$ and $V^1_\mu(y) = V_\mu \circ F^{-1}(y)$ plus some bounded functions. So one may check that $(0, e_d) \in \Sigma_Q$ which means the assumptions in Theorem 1 are satisfied. So applying Theorem 1 to Q and v, we have $v = 0$ in a neighborhood of 0. Pull back v to u by F. We have $u = 0$ in a neighborhood of x^0. This is a contradiction with $x^0 \in \suppu$.

In order to prove Theorem 1, we need several lemmas. Let’s first study the differential operator with real constants coefficients. We denote by A the vector $(a_\alpha)_{|\alpha|=m} \in \mathbb{R}^M$ for some number M determined by m and $P_A(D) = \sum_{|\alpha|=m} a_\alpha D^\alpha$, and denote by $N(A, k)$ the zero set of $P_A(\cdot + ik)$. We are always interested in the case that P_A is elliptic. Let’s introduce some functions as follows:

\[
S(A, \xi, k) = \sum_j \frac{dP_A}{dz_j}(\xi + ik)k_j,
\]
$$H(A, \xi, k) = \det \left(\frac{d^2 P_A}{dz_jdz_l}(\xi + ik) \right),$$
$$L(A, \xi, k) = \sum_{(j,l)} \left| \det \left(\frac{det P_A}{\dim P_A}(\xi + ik) \frac{det P_A}{\dim P_A}(\xi + ik) \right) \right|.$$

We notice that the assumption in Theorem 1 says that when \(A = (a_\alpha(0))\) and \(k = e_d\), the first two of the above functions are positive on \(N_{(0,e_d)}^F\). By the Cauchy-Riemann equation and the transversality theorem, we proved that \(L(A, \xi, k)\) is also positive on \(N_{(0,e_d)}^P\). See [3].

Lemma 1. Suppose for some \(A \in R^M\) and \(k_0 \in S^{d-1}\) the above three functions are positive on \(N_{(A,k_0)}\). Then there are some positive numbers \(c_0, b, \epsilon,\) an integer \(J,\) a neighborhood \(K\) of \(k_0\) in \(S^{d-1}\) and any finite small balls \(\{B_j(\epsilon)\}_{j=1}^J\) such that for any \(B \in R^M\) with \(\|B - A\| \leq b\) and any \(k \in K\) there are finite hypersurfaces \(\{S_j\}_{j=1}^J\) for which the following properties hold:

1. \(N_{(B,k)} \cap B_j(\epsilon) \subset S_j \cap B_j(\epsilon)\);
2. \(N_{(B,k)} \subset \bigcup_{j=1}^J B_j(\frac{\epsilon}{2})\);
3. \(S_j \cap B_j(\epsilon)\) is a piece of hypersurface with nonzero Gaussian curvature which is bounded by \(c_0\) from below for all \(j\).

Moreover for each such \((B, k)\), there is a diffeomorphism \(G_{(B,k)} : \bigcup_{j=1}^J B_j(\epsilon) \rightarrow D(\epsilon) \times N_{(B,k)}\) such that \(|G_{(B,k)}|\) is bounded by \(c_0\) from below.

Proof. We will prove this lemma in several steps as follows.

Step 1: There are positive constants \(c, b\) and a neighborhood \(K\) of \(k_0\) in \(S^{d-1}\) and an \(\epsilon\) neighborhood \(U\) of \(N_{(A,k_0)}\) such that for any \(B \in R^M\) with \(\|B - A\| \leq b\) and any \(k \in K\),
$$N_{(B,k)} \subset \frac{1}{2} U,$$
$$\min (S(B, \xi, k), H(B, \xi, k), L(B, \xi, k)) \geq c$$
for all \(\xi \in U\).

Proof of Step 1. Since \(P_A\) is an elliptic polynomial, the set \(N_{(A,k_0)}\) is a compact boundaryless submanifold of codim 2 by assumption. Functions \(S, H\) and \(L\) are continuous in three variables \(A, \xi\) and \(k\). So by assumption and compact argument and the \(\epsilon\) neighborhood theorem, Step 1 is proved.

Step 2: There are \(\epsilon\) and finite small balls such that for any \(B\) and \(k\) as in Step 1 there are finite hypersurfaces as in Lemma 1. (1), (2) and (3) of Lemma 1 hold.

Proof of Step 2. Since \(S(A, \xi, k_0)\) and \(H(A, \xi, k_0)\) are positive functions, Proposition 0.1 of [3] implies that there are finite \(\epsilon\) balls \(\{B_j(\epsilon)\}_{j=1}^J\) with centers \(\{\xi_j\} \subset N_{(A,k_0)}\) such that
$$N_{(A,k_0)} \subset \bigcup_{j=1}^J B_j(\frac{\xi_j}{4}).$$

Moreover there are also finite real numbers \(t_j\) and vectors \(\{x_j\}_{j=1}^J \subset R^d\) such that if we define functions \(f_j(A, \xi, k_0)\) by
$$\text{re} P_A(\xi + ik_0) + t_j \text{im} P_A(\xi + ik) + (x_j, \xi - \xi_j)(t_j \text{re} P_A(\xi + ik_0) - \text{im} P_A(\xi + ik))$$
$$- (x_j, \xi - \xi_j) (\text{re} P_A(\xi + ik_0) + t_j \text{im} P_A(\xi + ik))$$
$$\times \frac{(t_j \nabla \text{re} P_A(\xi_j + ik_0) - \nabla \text{im} P_A(\xi_j + ik_0), \nabla \text{re} P_A(\xi_j + ik_0) + t_j \nabla \text{im} P_A(\xi_j + ik_0))}{(\nabla \text{re} P_A(\xi_j + ik_0) + t_j \nabla \text{im} P_A(\xi_j + ik_0), \nabla \text{re} P_A(\xi_j + ik_0) + t_j \nabla \text{im} P_A(\xi_j + ik_0))},$$

and
then \(f_j(A,\cdot, k_0)^{-1}(0) \) is a hypersurface with Gaussian curvature bounded by \(2c_0 \) from below in \(B_j(\epsilon) \) for some constant \(c_0 \) which depends only on \(A \) and \(k_0 \). Now let’s fix \(A \) and \(k \) as in Step 1. When \(b \) and \(K \) are small enough, \(N_{(B,k)} \subset \bigcup_{j=1}^t B_j(\frac{\epsilon}{2}). \) Choose \(\eta_j \in B_j(\frac{\epsilon}{2}) \) with \(P_0(\eta_j + ik) = 0 \). Replace \(A, k_0 \) and \(\xi_j \) by \(B, k \) and \(\eta_j \) in the function \(f_j \) for each \(j \). Then once again when \(b \) and \(K \) are small enough, \(f_j(B,\cdot,k)^{-1}(0) \) is a piece of hypersurface with Gaussian curvature bounded by \(c_0 \) from below for all \(j \). This proves Step 2 with \(S_j = f_j(B,\cdot,k)^{-1}(0) \).

Step 3: The last part in Lemma 1 holds when \(\epsilon \) is small and \(J \) is larger.

Proof of Step 3. By the \(\epsilon \) neighborhood theorem, when \(\epsilon \) is small and \(J \) is large, there is a diffeomorphism \(G_{(A,k_0)} : \bigcup B_j(2\epsilon) \to D(2\epsilon) \times N_{(A,k_0)} \) where \(D(2\epsilon) \) is a 2-dimensional ball of radius \(2\epsilon \). In fact \(G_{(A,k_0)} \) may be defined by extending \(N_{(B,k)} \) along the normal directions, which we may choose as \(\nabla \text{re} P_A(\xi + ik_0) + t_j \nabla \text{im} P_A(\xi + ik_0) \) and \(t_j \nabla \text{re} P_A(\xi + ik_0) - \nabla \text{im} P_A(\xi + ik_0) \). Vertical is \(\xi \) is in the direction of each \(B_j(\frac{\epsilon}{2}) \). Since \(P_B(\xi + ik) \) are smooth in \((B,\xi,k)\) and \(L(B,\xi,k) \geq c \) by the assumption, for each \(B \) closing \(A \) and each \(k \) closing \(k_0 \), there is a diffeomorphism \(G_{(B,k)} : \bigcup B_j(\epsilon) \to D(\epsilon) \times N_{(B,k)} \) such that \(|G_{(B,k)}| \) is bounded by \(\frac{1}{2} |G_{(A,k_0)}| \) from below. This proves Step 3.

Finally if we let \(c_0 \) be a new constant decided by Step 2 and Step 3, we prove Lemma 1.

Let \(\Gamma \) be the open cone such that \(\Gamma \cap S^{d-1} = K \) which is as in Lemma 1. If \(E \) is a compact convex set with interior, then we define

\[
g_E(x) = \min(T \geq 1 : x \in TE)
\]

Fix once and for all \(t > d \), and define \(\|u\|_{p,E} = \|\gamma_p u\|_p \). Then by the Holder inequality we have

\[
\|u\|_p \leq C \|u\|_{q,E} |E|^\frac{1}{p} - \frac{1}{q}
\]

for any \(q \geq p \), where \(C \) depends only on \(t \) and \(d \).

Lemma 2. Suppose \(P_A \) is as in Lemma 1 and is of order \(m < \frac{d}{s} \). Let \(b \) and \(\Gamma \) be as before or as in Lemma 1. Then there is a constant \(C_A \) such that for all \(B \in R^M \) with \(|B - A| \leq b \) and any \(k \in \Gamma \) and all compact convex subsets \(E \subset R^d \) with \(|E| \geq |k|^{-d} \), we have

\[
\|e^{k} \cdot v^\mu f\|_{q_m} \leq C_A(|k|^d |E|)^{\frac{1}{s}} \|e^{k}P_B(D)f\|_{2,E}
\]

for all \(f \in W^{m,2} \) with compact support and all integers \(0 < \mu \leq m \), where \(q_m \) are the real numbers satisfying \(\frac{1}{2} - \frac{1}{q_m} = \frac{d}{s} \). When \(\mu = 0 \), we have the following inequality:

\[
\|e^{k} \cdot v^\mu f\|_2 \leq C_A(|k|\text{diam}E)|e^{k}P_B(D)f\|_{2,E}
\]

Proof. Let \(a = (\frac{1}{2},0) \), \(b = (1,0) \), \(c = (1, \frac{1}{2}) \) and \(d = (\frac{1}{2}, \frac{1}{2}) \). Let \(Q \) be a subset of \(R^2 \) consisting of the quadrilateral \(abcd \) and two sides \(ad \) and \(bc \). Let \(B \) and \(k \) with \(|k| = 1 \) be as in Lemma 2. So the conclusions of Lemma 1 hold for this \((B,k)\). First let \(0 < \mu \leq m \).

The inequality (3) is equivalent to

\[
\|(|m\hat{v})^\mu\|_{q_m} \leq C_A(|k|^d |E|)^{\frac{d}{s}} \|v\|_{2,E}
\]

with \(m(\xi) = \frac{|\xi + ik|^{m-\mu}}{P_{\mu}(\xi + ik)} \) for all \(v \in C_0^\infty \).
Let $U_{\frac{1}{2}} = \bigcup_{j=1}^{J} B_j(\frac{1}{2})$ and $U_1 = \bigcup_{j=1}^{J} B_j(\epsilon)$ which are in Lemma 1. Let ϕ be a smooth cutoff function taking 1 on $U_{\frac{1}{2}}$, and 0 on U_1. Write $m = a_1 + m_2$ with $m_1 = m\phi$ and $m_2 = m(1 - \phi)$. By Lemma 1, the exact proof of Lemma 2.1 in [3] shows that

$$
\|(m_1\hat{v})^\vee\|_q \leq C_A \|v\|_p
$$

for all $(\frac{1}{p}, \frac{1}{q}) \in Q$, where C_A is some constant which depends only on A, k_0 and d. Since $m_2(\xi) \leq (1 + |\xi|)^{-\mu}$, by the Bessel potential theory, we have

$$
\|(m_2\hat{v})^\vee\|_q \leq C_A \|v\|_p
$$

for all $(\frac{1}{p}, \frac{1}{q}) = \frac{\mu}{2d}$. Let q_μ be such that $\frac{1}{s} - \frac{1}{q_\mu} = \frac{\mu}{2d}$, and let q_1^s be such that $\frac{1}{s} - \frac{1}{q_1^s} = \frac{s}{d}$ if $s \geq 2$, q_1^s is sufficiently close to s' and is bigger than s'. Then for any compact convex set $|E| \geq 1$, since $q_1^s < q_\mu$ and m_1 has compact support, we have by using (6) and (2)

$$
\|(m_1\hat{v})^\vee\|_{q_\mu} \leq \|(m_1\hat{v})^\vee\|_{q_1^s} \leq C_A \|v\|_{s} \leq C_A |E|^\frac{1}{2} - \frac{1}{p} \|v\|_{2,E}
$$

which is bounded by $C_A |E|^\frac{1}{2} \|v\|_{2,E}$ since $|E| \geq 1$. Combining (8) and (7) we prove (5) and hence (3) with $|k| = 1$. After a scaling we prove Lemma 2 with $\mu \geq 1$.

Finally when $\mu = 0$, the inequality (4) was already showed in [4] without using any curvature property in Lemma 1. So this proves Lemma 2.

Lemma 3. Suppose f is supported in a ball B. Let $D(a, N)$ be a fixed ball in R^d. Then there is a pairwise disjoint compact convex subset $\{E_{k_j}\}$ with $\{k_j\} \subset D(a, N)$ such that

\[
\left\|e^{k_j \cdot x} f \cdot g_{E_{k_j}} \right\|_{L^1(E_{k_j})} \leq \frac{C_0^2 \|e^{k_j \cdot x} f\|_{L^1(E_{k_j})}}{|E_{k_j}|^{-1}} \geq C^{-1} N^{-d}, \forall s \geq 1,
\]

\[
\text{diam} E_{k_j} \leq C_0 N^{-\frac{1}{2}},
\]

$$
E_{k_j} \text{ contains a ball of radius } (C_0 N)^{-1},
$$

$$
E_{k_j} \subset 2B
$$

where C_0 is a universal constant depending only on d.

Proof. This is a special case of Wolff’s measure lemma in [4].

Now let’s start to prove Theorem 1. First we claim that we may assume the Lipschitz norm of $a_\alpha(x)$ is less than a small number ρ which will be chosen later. In fact let $F_1(x) = \delta^{-1} x$, $F_2(x) = (x, -x_d)$, $F_3(x) = \frac{x + \delta e_d}{|x + \delta e_d|} - e_d$ and let $F = F_3 \circ F_2 \circ F_1$. Then if δ is small enough, the function $v = u \circ F^{-1}$ is defined on a domain which contains $R^d \setminus B(-e_d, \frac{1}{2})$ and $v = 0$ outside $B(-e_d, 1)$. Moreover v satisfies the following differential inequality:

$$
|P_\delta(y, D)v(y)| \leq \sum_{0 < \mu \leq m} V_\mu(y) \|v\|_\mu^{-\mu} v(y)
$$

where $V_\mu(y)$ has the same properties as before, $P_\delta(y, D) = \sum_{|\alpha|=m} a_\alpha^\delta(y) D^\alpha$ with $a_\alpha^\delta(0) = a_\alpha(0)$ and $\|a_\alpha\|_{\text{lip}} \leq \delta \|a_\alpha\|_{\text{lip}}$. Let ρ be this number. On the other hand, if we let $A = (a_\alpha^\delta(0)) = (a_\alpha(0))$ and b, Γ be as in Lemma 2 or Lemma 1 with
\(k_0 = c_d\), then when \(\delta\) is small enough for any \(y \in B(0, \frac{1}{2})\) with \(B = (a_\delta^d(y))\) the inequalities (3) and (4) hold for all small \(\delta\).

Let’s assume \(0 \in \text{suppv}\). Let \(S\) be the convex hull of \(\text{suppv} \cap \{y \in \mathbb{R}^d : y_d \geq -\frac{1}{10}\}\) and \(\phi\) be a smooth cutoff function such that \(\phi = 0\) when \(y_d \leq -\frac{1}{8}\), \(\chi = 1\) in a neighborhood of \(\partial S\) and \(\sum_{0 < \mu \leq m} \|V_\mu\|_{L^\infty(\text{supp}\phi)} \leq \beta\) with a small constant \(\beta\) to be chosen later. Let \(w = v\phi\). Then by (4)

\[
|P_0(y, D)w(y)| \leq \sum_{0 < \mu \leq m} V_\mu(y)|\nabla^{m-\mu} w(y)| + \chi
\]

where \(\chi \in L^2\) and \(\text{supp}\chi \subset A_1 \cup A_2\); here \(A_2 = \{y \in B(-e_d, 1) : -\frac{1}{10} \geq y_d \geq -\frac{1}{8}\}\) and \(A_1\) is a compact subset of \(S\). Let \(r \leq \frac{1}{32}\) be a fixed small number so that the cone \(\Gamma_r = \{k \in \mathbb{R}^d : k_d > r^{-1} \sqrt{k_1^2 - k_2^2}\}\) is contained in \(\Gamma\) which is as in Lemma 2 for \(P_A\). So \(r\) is independent of \(\rho\).

Lemma 4. If \(\tau > 0\), then there is an \(L_0\) such that if \(k \in \Gamma_r\) and \(|k| \geq L_0\), then

\[
\|e^{k \cdot y} \cdot g_E\|_{2, E} \leq \|e^{k \cdot y} \sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w|\|_2
\]

for all \(E \subset B(0, \frac{1}{2})\) with \(E\) containing a ball of radius \(|k|^{-1}\).

Proof. Since \(\Gamma_r\) has conjugate cone \(\{k \in \mathbb{R}^d : (k, k') \leq 0 \forall k' \in \Gamma_r\}\) which contains \(B(-e_d, 1) \cap \{y : y_d \leq \frac{1}{8}\} \supset A_2\), the rest of the proof is exactly the same as the proof of Lemma 7.1 of [4]. So we are done.

Proof of Theorem 1. Let \(L \geq L_0\) be a large number. We will apply Lemma 3 to the function

\[
f = \left(\sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}} |\nabla^m w| \right)^2
\]

and the ball \(B(L e_d, \frac{1}{2}r L)\) with \(a = L e_d\) and \(N = \frac{1}{2}r L\). So \(\frac{1}{2}L \leq |k_j| \leq 2L\). Let \(Y_j = E_{k_j} \cap \text{suppv}\), let \(y_j\) be the center of the convex set \(E_{k_j}\) and let \(B_j = (a_\delta^d(y_j))\). So we have \(|B_j - A_j| \leq b\) and the inequalities (3) and (2) in Lemma 2. Then by using Holder’s inequality, (3), (4), and (11)

\[
\|e^{k_j \cdot y} \left(\sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}} |\nabla^m w| \right)\|_{L^2(E_{k_j})}
\leq \sum_{0 < \mu \leq m} \|V_\mu\|_{L^{\frac{d}{d-2}}(Y_j)} \|e^{k_j \cdot y} w\|_{d, \text{supp}(E_{k_j})} + \rho L^{-\frac{1}{2}} \|e^{k_j \cdot y} \nabla^m w\|_2
\leq C_A \left(\sum_{0 < \mu \leq m} (|k_j|^d |E_{k_j}|)^{\frac{d}{2}} \|V_\mu\|_{L^{\frac{d}{d-2}}(Y_j)} + \rho L^{-\frac{1}{2}} |k_j| \text{diam} E_{k_j} \right) \|e^{k_j \cdot y} P_{B_j}(D)w\|_{2, E_{k_j}}
\leq 2C_A \left(\sum_{0 < \mu \leq m} (L^d |E_{k_j}|)^{\frac{d}{2}} \|V_\mu\|_{L^{\frac{d}{d-2}}(Y_j)} + C_0 r^{-1} \rho \right) \|e^{k_j \cdot y} P_{B_j}(D)w\|_{2, E_{k_j}}.
\]
On the other hand, since a_{α}^δ is Lipschitz continuous it follows that $|a_{\alpha}^\delta(y_j) - a_{\alpha}^\delta(y)| \leq \rho \cdot |y_j - y| \leq \rho \text{diam}E_{k_j}g_{E_{k_j}} \leq C_0r^{-\frac{1}{2}}L^{-\frac{1}{2}}g_{E_{k_j}}$ by (11). So

$$|P_{B_j}(D)w(y)| \leq |P_\delta(y, D)w(y)| + C_0r^{-\frac{1}{2}}L^{-\frac{1}{2}}g_{E_{k_j}}|\nabla^m w|$$

and hence by (13)

$$|P_{B_j}(D)w(y)| \leq \sum_{0<\mu \leq m} V_\mu |\nabla^{m-\mu} w| + C_0r^{-\frac{1}{2}}L^{-\frac{1}{2}}g_{E_{k_j}}|\nabla^m w| + \chi.$$

Because of (14), we may ignore the term χ in the following process. Now by using (9) we have

$$\leq 2C_0r^{-\frac{1}{2}}|e_{k_j}^j \cdot P_{B_j}(D)w||_{2,E_{k_j}}$$

$$\leq 2C_0^2r^{-\frac{1}{2}}|e_{k_j}^j \cdot \left(\sum_{0<\mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}}|\nabla^m w| \right) g_{E_{k_j}}||_{2,E_{k_j}}$$

So combining (15) and (16), we have

$$1 \leq 2C_0^2r^{-\frac{1}{2}} \cdot 2C_A \left(\sum_{0<\mu \leq m} (L^d|E_{k_j}|)\frac{d}{d^\mu} ||V_\mu||_{L^{\frac{d}{d^\mu}}(Y_j)} + C_0r^{-\frac{1}{2}}L^{-\frac{1}{2}}g_{E_{k_j}} |\nabla^m w| \right).$$

Remember the constants r, C_0 and C_A are independent of ρ, i.e., δ. So after making δ and hence ρ small, (17) implies

$$\sum_{0<\mu \leq m} (L^d|E_{k_j}|)\frac{d}{d^\mu} ||V_\mu||_{L^{\frac{d}{d^\mu}}(Y_j)} \geq C$$

and hence

$$\max_{0<\mu \leq m} \{||V_\mu||_{L^{\frac{d}{d^\mu}}(Y_j)}\} \geq C(L^d|E_{k_j}|)^{-1}$$

for some constant C depending only on d and A. Summing up over j for (18), (10) implies that

$$\sum_{0<\mu \leq m} ||V_\mu||_{L^{\frac{d}{d^\mu}}(\text{supp} w)} \geq C_0^{-1}C,$$

which is a contradiction if β is small enough. This proves Theorem 1.

Acknowledgments

I would like to thank Professor Tom Wolff for his constant encouragement while I was considering this problem. I would also like to thank the Alfred P. Sloan Foundation for a Doctoral Dissertation Fellowship, 1992-93.
REFERENCES

Department of Mathematics, Florida International University, Miami, Florida 33199
E-mail address: wangwens@zeus.fiu.edu or wangw@solix.fiu.edu