Endomorphisms of finite full transformation semigroups
HTML articles powered by AMS MathViewer
- by Boris M. Schein and Beimnet Teclezghi
- Proc. Amer. Math. Soc. 126 (1998), 2579-2587
- DOI: https://doi.org/10.1090/S0002-9939-98-04764-9
- PDF | Request permission
Abstract:
We describe all endomorphisms of finite full transformation semigroups and count their number.References
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1967. MR 0218472
- M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, “Nauka”, Moscow, 1979 (Russian). Third edition, revised and supplemented. MR 552276
- Bernard Harris and Lowell Schoenfeld, The number of idempotent elements in symmetric semigroups, J. Combinatorial Theory 3 (1967), 122–135. MR 211879, DOI 10.1016/S0021-9800(67)80002-4
- Schreier, J., Über Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fundamenta Mathematicæ 28(1936), 261–264
- M. Tainiter, A characterization of idempotents in semigroups, J. Combinatorial Theory 5 (1968), 370–373. MR 232874, DOI 10.1016/S0021-9800(68)80012-2
Bibliographic Information
- Boris M. Schein
- Affiliation: Department of Mathematical Sciences, University of Arkansas, SCEN–307, Fayetteville, Arkansas 72701
- Email: bschein@comp.uark.edu
- Beimnet Teclezghi
- Affiliation: Division of Sciences, Jarvis College, Hawkins, Texas 75765
- Email: teclezghi@jarvis.edu
- Received by editor(s): February 12, 1997
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2579-2587
- MSC (1991): Primary 20M20; Secondary 03G25, 05A15
- DOI: https://doi.org/10.1090/S0002-9939-98-04764-9
- MathSciNet review: 1487338