Fixed points and random fixed points
for weakly inward approximable maps
Author:
Donal O'Regan
Journal:
Proc. Amer. Math. Soc. 126 (1998), 3045-3053
MSC (1991):
Primary 47H04, 47H10, 47H40, 54C60, 54H25
DOI:
https://doi.org/10.1090/S0002-9939-98-04601-2
MathSciNet review:
1469430
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we obtain new fixed point and random fixed point theory for approximable maps.
- 1. Józef Banaś and Kazimierz Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc., New York, 1980. MR 591679
- 2. H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170 (1992), no. 2, 477–500. MR 1188567, https://doi.org/10.1016/0022-247X(92)90032-9
- 3. H. Ben-El-Mechaiekh and A. Idzik, A Leray-Schauder type theorem for approximable maps, Proc. Amer. Math. Soc. 122 (1994), no. 1, 105–109. MR 1212281, https://doi.org/10.1090/S0002-9939-1994-1212281-2
- 4. Arrigo Cellina, A theorem on the approximation of compact multivalued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 47 (1969), 429–433 (1970) (English, with Italian summary). MR 276936
- 5. Klaus Deimling, Multivalued differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1992. MR 1189795
- 6. P. M. Fitzpatrick and W. V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, Pacific J. Math. 54 (1974), no. 2, 17–23. MR 405179
- 7. Lech Górniewicz, Andrzej Granas, and Wojciech Kryszewski, Sur la méthode de l’homotopie dans la théorie des points fixes pour les applications multivoques. I. Transversalité topologique, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 9, 489–492 (French, with English summary). MR 964113
- 8. Marc Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), no. 1, 151–201. MR 721236, https://doi.org/10.1016/0022-247X(83)90244-5
- 9. Donal O’Regan, Some fixed point theorems for concentrative mappings between locally convex linear topological spaces, Nonlinear Anal. 27 (1996), no. 12, 1437–1446. MR 1408881, https://doi.org/10.1016/0362-546X(95)00130-N
- 10. D. O'Regan, A topological approach to integral inclusions, Proc. Royal Irish Acad., 97A (1997), 101-111.
- 11. D. O'Regan, A continuation theory for weakly inward mappings, Glasgow Math. Journal, to appear.
- 12. Sehie Park, Fixed points of approximable maps, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3109–3114. MR 1343717, https://doi.org/10.1090/S0002-9939-96-03512-5
- 13. Simeon Reich, A fixed point theorem for Fréchet spaces, J. Math. Anal. Appl. 78 (1980), no. 1, 33–35. MR 595760, https://doi.org/10.1016/0022-247X(80)90206-1
- 14. Kok-Keong Tan and Xian-Zhi Yuan, Random fixed-point theorems and approximation in cones, J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. MR 1283065, https://doi.org/10.1006/jmaa.1994.1256
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47H04, 47H10, 47H40, 54C60, 54H25
Retrieve articles in all journals with MSC (1991): 47H04, 47H10, 47H40, 54C60, 54H25
Additional Information
Donal O'Regan
Affiliation:
Department of Mathematics, University College Galway, Galway, Ireland
Email:
donal.oregan@ucg.ie
DOI:
https://doi.org/10.1090/S0002-9939-98-04601-2
Received by editor(s):
December 26, 1996
Received by editor(s) in revised form:
March 17, 1997
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1998
American Mathematical Society