Contractive mappings, Kannan mappings and metric completeness
HTML articles powered by AMS MathViewer
- by Naoki Shioji, Tomonari Suzuki and Wataru Takahashi
- Proc. Amer. Math. Soc. 126 (1998), 3117-3124
- DOI: https://doi.org/10.1090/S0002-9939-98-04605-X
- PDF | Request permission
Abstract:
In this paper, we first study the relationship between weakly contractive mappings and weakly Kannan mappings. Further, we discuss characterizations of metric completeness which are connected with the existence of fixed points for mappings. Especially, we show that a metric space is complete if it has the fixed point property for Kannan mappings.References
- S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warszawa, 1932.
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- J. Dugundji, Positive definite functions and coincidences, Fund. Math. 90 (1975/76), no. 2, 131–142. MR 400192, DOI 10.4064/fm-90-2-131-142
- Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474. MR 526967, DOI 10.1090/S0273-0979-1979-14595-6
- T. K. Hu, On a fixed-point theorem for metric spaces, Amer. Math. Monthly 74 (1967), 436–437. MR 210107, DOI 10.2307/2314587
- Osamu Kada, Tomonari Suzuki, and Wataru Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), no. 2, 381–391. MR 1416281
- R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405–408. MR 257838, DOI 10.2307/2316437
- W. A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), no. 1, 81–86. MR 436111, DOI 10.4064/cm-36-1-81-86
- Simeon Reich, Kannan’s fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1–11. MR 0305163
- T. Suzuki, Several fixed point theorems in complete metric spaces, Yokohama Math. J. 44 (1997), 61–72.
- T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, to appear in Topol. Methods Nonlinear Anal.
- Wataru Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed point theory and applications (Marseille, 1989) Pitman Res. Notes Math. Ser., vol. 252, Longman Sci. Tech., Harlow, 1991, pp. 397–406 (English, with French summary). MR 1122847, DOI 10.2115/fiber.47.8_{3}97
Bibliographic Information
- Naoki Shioji
- Affiliation: Faculty of Engineering, Tamagawa University, Tamagawa-Gakuen, Machida, Tokyo 194, Japan
- Email: shioji@eng.tamagawa.ac.jp
- Tomonari Suzuki
- Affiliation: Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152, Japan
- Email: tomonari@is.titech.ac.jp
- Wataru Takahashi
- Email: wataru@is.titech.ac.jp
- Received by editor(s): October 25, 1996
- Received by editor(s) in revised form: February 27, 1997
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 3117-3124
- MSC (1991): Primary 54E50
- DOI: https://doi.org/10.1090/S0002-9939-98-04605-X
- MathSciNet review: 1469434