## On reductive group actions and fixed points

HTML articles powered by AMS MathViewer

- by Minhyong Kim PDF
- Proc. Amer. Math. Soc.
**126**(1998), 3397-3400 Request permission

## Abstract:

Among analytic actions of reductive groups on projective varieties, we characterize the algebraic ones by the existence of fixed points for one-parameter subgroups. This applies to the problem of lifting the action of a compact Lie group on a projective manifold to a line bundle.## References

- M. F. Atiyah,
*Convexity and commuting Hamiltonians*, Bull. London Math. Soc.**14**(1982), no. 1, 1–15. MR**642416**, DOI 10.1112/blms/14.1.1 - Garrett Birkhoff and Morgan Ward,
*A characterization of Boolean algebras*, Ann. of Math. (2)**40**(1939), 609–610. MR**9**, DOI 10.2307/1968945 - Armand Borel,
*Linear representations of semi-simple algebraic groups*, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 421–440. MR**0372054** - T. Frankel,
*Fixed points on Kaehler manifolds*, Ann. of Math.**70**(1959), 1–8. - A. Grothendieck,
*Techniques de construction et théorèmes d’existence en géométrie algébrique IV*, Seminaire Bourbaki**221**, (1960/61). - V. Guillemin and S. Sternberg,
*Geometric quantization and multiplicities of group representations*, Invent. Math.**67**(1982), no. 3, 515–538. MR**664118**, DOI 10.1007/BF01398934 - Serge Lang,
*Hyperbolic and Diophantine analysis*, Bull. Amer. Math. Soc. (N.S.)**14**(1986), no. 2, 159–205. MR**828820**, DOI 10.1090/S0273-0979-1986-15426-1 - David Mumford and John Fogarty,
*Geometric invariant theory*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR**719371**, DOI 10.1007/978-3-642-96676-7 - Cahit Arf,
*Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper*, J. Reine Angew. Math.**181**(1939), 1–44 (German). MR**18**, DOI 10.1515/crll.1940.181.1

## Additional Information

**Minhyong Kim**- Affiliation: Department of Mathematics, University of Arizona, Tucson, Arizona 85721
- Email: kim@math.arizona.edu
- Received by editor(s): August 21, 1992
- Received by editor(s) in revised form: February 5, 1997
- Communicated by: Eric M. Friedlander
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 3397-3400 - MSC (1991): Primary 22E10
- DOI: https://doi.org/10.1090/S0002-9939-98-04346-9
- MathSciNet review: 1451815