## Band-sums are ribbon concordant to the connected sum

HTML articles powered by AMS MathViewer

- by Katura Miyazaki PDF
- Proc. Amer. Math. Soc.
**126**(1998), 3401-3406 Request permission

## Abstract:

We show that an arbitrary band-connected sum of two or more knots are ribbon concordant to the connected sum of these knots. As an application we consider which knot can be a nontrivial band-connected sum.## References

- Mario Eudave Muñoz,
*Prime knots obtained by band sums*, Pacific J. Math.**139**(1989), no. 1, 53–57. MR**1010784**, DOI 10.2140/pjm.1989.139.53 - David Gabai,
*Genus is superadditive under band connected sum*, Topology**26**(1987), no. 2, 209–210. MR**895573**, DOI 10.1016/0040-9383(87)90061-9 - C. McA. Gordon,
*Ribbon concordance of knots in the $3$-sphere*, Math. Ann.**257**(1981), no. 2, 157–170. MR**634459**, DOI 10.1007/BF01458281 - J. Hillman;
*On $L^2$-homology and asphericity*, Israel J. Math. 99(1997), 271–283. - James Howie and Hamish Short,
*The band-sum problem*, J. London Math. Soc. (2)**31**(1985), no. 3, 571–576. MR**812788**, DOI 10.1112/jlms/s2-31.3.571 - Tsuyoshi Kobayashi,
*Fibered links which are band connected sum of two links*, Knots 90 (Osaka, 1990) de Gruyter, Berlin, 1992, pp. 9–23. MR**1177410** - T. Kobayashi;
*Knots which are prime on band connected sum*, In: Proceedings of applied mathematics workshop vol. 4, (ed. K. H. Ko and G. T. Jin), 1994, KAIST, Korea, 79-89. - Yoshihiko Marumoto,
*Some higher-dimensional knots*, Osaka J. Math.**24**(1987), no. 4, 759–783. MR**927060** - K. Miyazaki;
*Non-simple, ribbon fibered knots*, Thesis, University of Texas at Austin, 1990. - E. S. Rapaport;
*Knot-like groups*, Ann. of Math. Studies 84, 1975, Princeton Univ. Press, 119-133. - Martin Scharlemann,
*Smooth spheres in $\textbf {R}^4$ with four critical points are standard*, Invent. Math.**79**(1985), no. 1, 125–141. MR**774532**, DOI 10.1007/BF01388659 - Martin Scharlemann,
*Sutured manifolds and generalized Thurston norms*, J. Differential Geom.**29**(1989), no. 3, 557–614. MR**992331** - Daniel S. Silver,
*Growth rates of $n$-knots*, Topology Appl.**42**(1991), no. 3, 217–230. MR**1137948**, DOI 10.1016/0166-8641(91)90123-4 - D. S. Silver,
*On knot-like groups and ribbon concordance*, J. Pure Appl. Algebra**82**(1992), no. 1, 99–105. MR**1181096**, DOI 10.1016/0022-4049(92)90013-6 - Abigail Thompson,
*Property $\textrm {P}$ for the band-connect sum of two knots*, Topology**26**(1987), no. 2, 205–207. MR**895572**, DOI 10.1016/0040-9383(87)90060-7

## Additional Information

**Katura Miyazaki**- Affiliation: Faculty of Engineering, Tokyo Denki University, 2-2 Kanda-Nishikicho, Tokyo 101, Japan
- Email: miyazaki@cck.dendai.ac.jp
- Received by editor(s): November 12, 1996
- Received by editor(s) in revised form: February 12, 1997
- Communicated by: Ronald A. Fintushel
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 3401-3406 - MSC (1991): Primary 57M25; Secondary 57Q60
- DOI: https://doi.org/10.1090/S0002-9939-98-04352-4
- MathSciNet review: 1451821