The Skolem property in rings of integer-valued polynomials
HTML articles powered by AMS MathViewer
- by Jean-Luc Chabert, Scott T. Chapman and William W. Smith
- Proc. Amer. Math. Soc. 126 (1998), 3151-3159
- DOI: https://doi.org/10.1090/S0002-9939-98-04376-7
- PDF | Request permission
Abstract:
Let $D$ be an integral domain with quotient field $K$ and $E\subseteq D$. We investigate the relationship between the Skolem and completely integrally closed properties in the ring of integer-valued polynomials \[ \mathrm {Int}(E, D) = \{f(X) \mid f(X) \in K[X] \text { and } f(a)\in D \text { for every } a\in E\}. \] Among other things, we show for the case $D=\mathbb {Z}$ and $\vert E \vert = \infty$ that the following are equivalent: (1) $\text {Int}(E,\mathbb {Z})$ is strongly Skolem, (2) $\text {Int}(E,\mathbb {Z})$ is completely integrally closed, and (3) $\text {Int}(E,\mathbb {Z})= \text {Int}(E\backslash \{a\}, \mathbb {Z})$ for every $a\in E$.References
- D. D. Anderson, David F. Anderson, and Muhammad Zafrullah, Rings between $D[X]$ and $K[X]$, Houston J. Math. 17 (1991), no. 1, 109–129. MR 1107192
- Demetrios Brizolis, A theorem on ideals in Prüfer rings of integral-valued polynomials, Comm. Algebra 7 (1979), no. 10, 1065–1077. MR 533204, DOI 10.1080/00927877908822391
- P.-J. Cahen, Polynômes à valeurs entières, Thèse, Université Paris XI, Orsay, 1973.
- Paul-Jean Cahen, Integer-valued polynomials on a subset, Proc. Amer. Math. Soc. 117 (1993), no. 4, 919–929. MR 1116252, DOI 10.1090/S0002-9939-1993-1116252-5
- P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 48 (1997).
- Jean-Luc Chabert, Anneaux de “polynômes à valeurs entières” et anneaux de Fatou, Bull. Soc. Math. France 99 (1971), 273–283 (French). MR 302636, DOI 10.24033/bsmf.1721
- Jean-Luc Chabert, Un anneau de Prüfer, J. Algebra 107 (1987), no. 1, 1–16 (French, with English summary). MR 883864, DOI 10.1016/0021-8693(87)90068-8
- Jean-Luc Chabert, Une caractérisation des polynômes prenant des valeurs entières sur tous les nombres premiers, Canad. Math. Bull. 39 (1996), no. 4, 402–407 (French, with English and French summaries). MR 1426685, DOI 10.4153/CMB-1996-048-7
- J.-L. Chabert, S. Chapman and W. Smith, A Basis for the Ring of Polynomials Integer-Valued on Prime Numbers to appear Factorization in Integral Domains, Marcel Dekker.
- J.-L. Chabert, S. Chapman and W. Smith, Algebraic Properties of the Ring of Polynomials Integer-Valued on Prime Numbers, Comm. Algebra. 25 (1997), 1945–1959.
- Robert Gilmer, Sets that determine integer-valued polynomials, J. Number Theory 33 (1989), no. 1, 95–100. MR 1014390, DOI 10.1016/0022-314X(89)90062-0
- Hiroshi Gunji and Donald L. McQuillan, On rings with a certain divisibility property, Michigan Math. J. 22 (1975), no. 4, 289–299 (1976). MR 396542
- Donald L. McQuillan, On Prüfer domains of polynomials, J. Reine Angew. Math. 358 (1985), 162–178. MR 797681, DOI 10.1515/crll.1985.358.162
- Donald L. McQuillan, Rings of integer-valued polynomials determined by finite sets, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 177–184. MR 845540
- Donald L. McQuillan, On a theorem of R. Gilmer, J. Number Theory 39 (1991), no. 3, 245–250. MR 1133554, DOI 10.1016/0022-314X(91)90047-F
- A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine Angew. Math. 149 (1919), 117-124.
- G. Pólya, Ueber ganzwertige ganze Funktionen, Rend. Circ. Matem. Palermo 40 (1915), 1–16.
- G. Pólya, Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine Angew. Math. 149 (1919), 97-116.
- G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II, Springer-Verlag, Berlin, 1925.
- T. Skolem, Ein Satz über ganzwertige Polynome, Norske Vid. Selsk (Trondheim) 9 (1936), 111-113.
Bibliographic Information
- Jean-Luc Chabert
- Affiliation: Faculté de Mathématiques et d’Informatique, Université de Picardie, 33 rue Saint Leu, 80 039 Amiens, France
- Email: jlchaber@worldnet.fr
- Scott T. Chapman
- Affiliation: Department of Mathematics, Trinity University, 715 Stadium Drive, San Antonio, Texas 78212-7200
- MR Author ID: 47470
- Email: schapman@trinity.edu
- William W. Smith
- Affiliation: Department of Mathematics, The University of North Carolina at Chapel Hill, North Carolina 27599-3250
- Email: wwsmith@math.unc.edu
- Received by editor(s): October 10, 1996
- Received by editor(s) in revised form: March 25, 1997
- Additional Notes: Part of this work was completed while the third author was on leave visiting Trinity University.
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 3151-3159
- MSC (1991): Primary 13B25; Secondary 11S05, 12J10, 13E05, 13G05
- DOI: https://doi.org/10.1090/S0002-9939-98-04376-7
- MathSciNet review: 1452796