## Algebraic lattices and nonassociative structures

HTML articles powered by AMS MathViewer

- by Antonio Fernández López and Eulalia García Rus PDF
- Proc. Amer. Math. Soc.
**126**(1998), 3211-3221 Request permission

## Abstract:

Uniform elements in algebraic lattices are studied and their relationship with some nonassociative extensions of Goldie’s Second Theorem is shown.## References

- P. Crawley and R.P. Dilworth,
*Algebraic theory of lattices*, Prentice-Hall, Inc., New Jersey, 1973. - Hassane Essannouni and Amin Kaidi,
*Semiprime alternative rings with a.c.c*, Ring theory (Granada, 1986) Lecture Notes in Math., vol. 1328, Springer, Berlin, 1988, pp. 82–93. MR**959747**, DOI 10.1007/BFb0100918 - H. Essannouni and A. Kaidi,
*Goldie’s theorem for alternative rings*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 39–45. MR**1181162**, DOI 10.1090/S0002-9939-1994-1181162-5 - Antonio Fernández López,
*On annihilators in Jordan algebras*, Publ. Mat.**36**(1992), no. 2A, 569–589 (1993). MR**1209824**, DOI 10.5565/PUBLMAT_{3}62A92_{1}8 - Antonio Fernández López and Eulalia García Rus,
*Prime Jordan algebras satisfying local Goldie conditions*, J. Algebra**174**(1995), no. 3, 1024–1048. MR**1337183**, DOI 10.1006/jabr.1995.1165 - Antonio Fernández López and Eulalia García Rus,
*Nondegenerate Jordan algebras satisfying local Goldie conditions*, J. Algebra**182**(1996), no. 1, 52–59. MR**1388857**, DOI 10.1006/jabr.1996.0161 - A. Fernández López, E. García Rus, M. Gómez Lozano and M. Siles Molina,
*Goldie Theorem for associative pairs*(to appear). - A. Fernández López, E. García Rus and F. Montaner,
*Goldie Theory for Jordan algebras*(to appear). - John Fountain and Victoria Gould,
*Orders in rings without identity*, Comm. Algebra**18**(1990), no. 9, 3085–3110. MR**1063352**, DOI 10.1080/00927879008824062 - John Fountain and Victoria Gould,
*Orders in regular rings with minimal condition for principal right ideals*, Comm. Algebra**19**(1991), no. 5, 1501–1527. MR**1111145**, DOI 10.1080/00927879108824216 - John Fountain and Victoria Gould,
*Orders in semiprime rings with minimal condition for principal right ideals*, Proc. Roy. Soc. Edinburgh Sect. A**121**(1992), no. 3-4, 375–380. MR**1179826**, DOI 10.1017/S0308210500027979 - K.R. Goodearl,
*Ring theory: Nonsingular rings and modules Pure and Applied Mathematics*, Marcel Dekker, New York, 1976. - Nathan Jacobson,
*Structure and representations of Jordan algebras*, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR**0251099**, DOI 10.1090/coll/039 - Nathan Jacobson,
*Structure theory of Jordan algebras*, University of Arkansas Lecture Notes in Mathematics, vol. 5, University of Arkansas, Fayetteville, Ark., 1981. MR**634508** - O. Loos,
*Jordan pairs, Lecture Notes in Mathematics, vol 460*, Springer-Verlag, Berlin and New York, 1975. - Kevin McCrimmon,
*Strong prime inheritance in Jordan systems*, Algebras Groups Geom.**1**(1984), no. 2, 217–234. MR**760494** - Kevin McCrimmon,
*The Zel′manov annihilator and nilpotence of the nil radical in quadratic Jordan algebras with chain conditions*, J. Algebra**67**(1980), no. 1, 230–253. MR**595030**, DOI 10.1016/0021-8693(80)90319-1 - Erhard Neher,
*Jordan triple systems by the grid approach*, Lecture Notes in Mathematics, vol. 1280, Springer-Verlag, Berlin, 1987. MR**911879**, DOI 10.1007/BFb0078217 - E. I. Zel′manov,
*Goldie theorems for Jordan algebras*, Sibirsk. Mat. Zh.**28**(1987), no. 6, 44–52, 217 (Russian). MR**928338** - E. I. Zel′manov,
*Goldie theorems for Jordan algebras. II*, Sibirsk. Mat. Zh.**29**(1988), no. 4, 68–74, 223 (Russian); English transl., Siberian Math. J.**29**(1988), no. 4, 567–573 (1989). MR**969104**, DOI 10.1007/BF00969864 - K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov, and A. I. Shirshov,
*Rings that are nearly associative*, Pure and Applied Mathematics, vol. 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Translated from the Russian by Harry F. Smith. MR**668355**

## Additional Information

**Antonio Fernández López**- Affiliation: Departamento de Algebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- MR Author ID: 66255
- Email: emalfer@ccuma.sci.uma.es
**Eulalia García Rus**- Affiliation: Departamento de Algebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Received by editor(s): November 20, 1996
- Received by editor(s) in revised form: April 8, 1997
- Additional Notes: This work was supported by DGICYT Grant PB093-0990 and by the “Plan Andaluz de Investigación y Desarrollo Tecnológico".
- Communicated by: Lance W. Small
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 3211-3221 - MSC (1991): Primary 06B05, 16P60, 17C10
- DOI: https://doi.org/10.1090/S0002-9939-98-04443-8
- MathSciNet review: 1459121