## Newton’s formula for $\mathfrak {gl}_{n}$

HTML articles powered by AMS MathViewer

- by Tôru Umeda PDF
- Proc. Amer. Math. Soc.
**126**(1998), 3169-3175 Request permission

## Abstract:

This paper presents an explicit relation between the two sets which are well-known generators of the center of the universal enveloping algebra $U(\mathfrak {gl}_{n})$ of the Lie algebra $\mathfrak {gl}_{n}$: one by Capelli (1890) and the other by Gelfand (1950). Our formula is motivated to give an exact analogy for the classical Newton’s formula connecting the elementary symmetric functions and the power sum symmetric functions. The formula itself can be deduced from a more general result on Yangians obtained by Nazarov. Our proof is elementary and has an advantage in its direct accessibility.## References

- A. Capelli,
*Sur les opérations dans la théorie des formes algébriques*, Math. Ann.**37**(1890), 1–37. - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon,
*Noncommutative symmetric functions*, Adv. Math.**112**(1995), no. 2, 218–348. MR**1327096**, DOI 10.1006/aima.1995.1032 - Roger Howe,
*Remarks on classical invariant theory*, Trans. Amer. Math. Soc.**313**(1989), no. 2, 539–570. MR**986027**, DOI 10.1090/S0002-9947-1989-0986027-X - Roger Howe and T\B{o}ru Umeda,
*The Capelli identity, the double commutant theorem, and multiplicity-free actions*, Math. Ann.**290**(1991), no. 3, 565–619. MR**1116239**, DOI 10.1007/BF01459261 - M. Itoh,
*Master’s thesis at Kyoto University*, 1997 Feb.. - A. Molev, M. Nazarov, and G. Ol′shanskiĭ,
*Yangians and classical Lie algebras*, Uspekhi Mat. Nauk**51**(1996), no. 2(308), 27–104 (Russian); English transl., Russian Math. Surveys**51**(1996), no. 2, 205–282. MR**1401535**, DOI 10.1070/RM1996v051n02ABEH002772 - M. L. Nazarov,
*Quantum Berezinian and the classical Capelli identity*, Lett. Math. Phys.**21**(1991), no. 2, 123–131. MR**1093523**, DOI 10.1007/BF00401646 - Maxim Nazarov and Vitaly Tarasov,
*Yangians and Gel′fand-Zetlin bases*, Publ. Res. Inst. Math. Sci.**30**(1994), no. 3, 459–478. MR**1299525**, DOI 10.2977/prims/1195165907 - E. Netto,
*Vorlesungen über Algebra*, Leibzig, 1896. - I. Newton,
*Arithmetica universalis*(Lugd, ed.), 1707. - Masatoshi Noumi, T\B{o}ru Umeda, and Masato Wakayama,
*A quantum analogue of the Capelli identity and an elementary differential calculus on $\textrm {GL}_q(n)$*, Duke Math. J.**76**(1994), no. 2, 567–594. MR**1302325**, DOI 10.1215/S0012-7094-94-07620-5 - H. Ochiai,
*Harish-Chandra isomorphism for $\mathfrak {gl}_{n}$*, private notes (1996). - A. M. Perelomov and V. S. Popov,
*Casimir operators for $\textrm {U}(n)$ and $\textrm {SU}(n)$*, Soviet J. Nuclear Phys.**3**(1966), 676–680. MR**0205620** - A. M. Perelomov and V. S. Popov,
*Casimir operators for the orthogonal and symplectic groups*, Soviet J. Nuclear Phys.**3**(1966), 819–824. MR**0205621** - H. Weyl,
*The Classical Groups, their Invariants and Representations*, Princeton Univ. Press, 1946. - D. P. Zhelobenko,
*Kompaktnye gruppy Li i ikh predstavleniya*, Izdat. “Nauka”, Moscow, 1970 (Russian). MR**0473097**

## Additional Information

**Tôru Umeda**- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606, Japan
- Email: umeda@kusm.kyoto-u.ac.jp
- Received by editor(s): March 28, 1997
- Communicated by: Roe Goodman
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 3169-3175 - MSC (1991): Primary 17B35, 15A33
- DOI: https://doi.org/10.1090/S0002-9939-98-04557-2
- MathSciNet review: 1468206

Dedicated: Dedicated to Professor Reiji Takahashi on the occasion of his seventieth birthday