INTEGER SETS WITH DISTINCT SUBSET SUMS

P. E. FRENKEL

(Communicated by David E. Rohrlich)

Abstract. We give a simple, elementary new proof of a generalization of the following conjecture of Paul Erdős: the sum of the elements of a finite integer set with distinct subset sums is less than 2.

Let \(a_0 < a_1 < \cdots < a_n \) be positive integers with all the sums \(\sum_{i=0}^{n} \varepsilon_i a_i (\varepsilon_i = 0; 1) \) different. It was conjectured by P. Erdős and proved by C. Ryavec that then

\[
\sum_{i=0}^{n} \frac{1}{a_i} < 2 \left(= \sum_{i=0}^{\infty} \frac{1}{2^i} \right)
\]

(see [1]). F. Hanson, J. M. Steele and F. Stenger [2] proved the generalization

\[
\sum_{i=0}^{n} \frac{1}{a_i^s} < \frac{1}{1 - 2^{-s}} \left(= \sum_{i=0}^{\infty} \frac{1}{2^{is}} \right)
\]

for all real \(s > 0 \). These proofs are relatively simple but use generating functions and other methods in analysis. I have recently learned that a brilliant elementary solution to Erdős’s original problem was found by A. Bruen and D. Borwein, more than 20 years ago. See [3] or [4].

We prove by elementary methods the more general statement that (continuing to assume that all sums \(\sum_{i=0}^{n} \varepsilon_i a_i \) are different)

\[
\sum_{i=0}^{n} f(a_i) \leq \sum_{i=0}^{n} f(2^i) \tag{1}
\]

for any convex decreasing function \(f \).

The hypothesis implies for \(k = 0; 1; \ldots; n \) that

\[
\sum_{i=0}^{k} a_i \geq 2^{k+1} - 1 \tag{*}
\]

since there exist \(2^{k+1} - 1 \) distinct positive integers (namely, \(\sum_{i=0}^{k} \varepsilon_i a_i (\varepsilon_i = 0; 1, (\varepsilon_i)_0^k \neq (0)_k^k) \)) which are all less than or equal to \(\sum_{i=0}^{k} a_i \).

Consider all \((n+1) \)-tuples of positive integers \(a_0 < a_1 < \cdots < a_n \) having property \((*) \) for \(k = 0; 1; \ldots; n \). It suffices to prove that among all these, the \((n+1) \)-tuple
$a_i = 2^i \ (i = 0; 1; \ldots ; n)$ has maximal $\sum_{i=0}^{n} f(a_i)$. Consider any such $(n + 1)$-tuple. We define an index k to be good if equality holds in (\ast) and bad otherwise. If all indices are good then clearly $a_i = 2^i \ (i = 0; 1; \ldots ; n)$. If not, then let p be the smallest bad index. If there is any good index larger than p, then let q be the smallest such index. Since $a_i = 2^i$ for $i < p$ and $a_p > 2^p$, it follows that the number $a_p - 1$ is a positive integer and does not occur among the numbers a_i. If q exists, then $q \neq 0$ and so

$$a_q = \sum_{i=0}^{q} a_i - \sum_{i=0}^{q-1} a_i < 2^{q+1} - 1 - (2^q - 1) = 2^q,$$

since $q-1$ is bad and q is good. If $q \leq n-1$, then $a_{q+1} = \sum_{i=0}^{q} a_i - \sum_{i=0}^{q} a_i \geq 2^{q+1}$, hence $a_{q+1} > a_q$ and so the number $a_q + 1$ does not occur among the numbers a_i.

Therefore, we may replace a_p by $a_p - 1$ and, if q exists, a_q by $a_q + 1$. The property $1 \leq a_0 < a_1 < \cdots < a_n$ and the property (\ast) will be preserved (this follows from the definition of p and q). Since f is decreasing and convex, the sum $\sum_{i=0}^{n} f(a_i)$ will not be decreased whether q exists or not.

We may repeat this procedure until we reach the $(n + 1)$-tuple $a_i = 2^i$. This will happen after a finite number of steps since the sum $\sum_{i=0}^{n} (n + 1 - i) a_i$ takes only positive integer values and is decreased by at least 1 in every step. This completes the proof.

It is easily seen that if f is strictly decreasing and strictly convex (as in the case $f(x) = x^{-s} (s > 0)$), then equality in (1) holds only for $a_i = 2^i \ (i = 0; 1; \ldots ; n)$.

REFERENCES

KÚTVÖLGYI ÚT 40, BUDAPEST 1125, HUNGARY
E-mail address: frenkelp@cs.elte.hu