ON COMPONENT GROUPS OF $J_0(N)$
AND DEGENERACY MAPS

SAN LING

(Communicated by David E. Rohrlich)

ABSTRACT. For an integer $M > 1$ and a prime $p \geq 5$ not dividing M, we study the kernel of the degeneracy map $\Phi_{Mp,p} \rightarrow \Phi_{Mp',p'}$, where $\Phi_{Mp,p}$ and $\Phi_{Mp',p'}$ are the component groups of $J_0(Mp)$ and $J_0(Mp')$, respectively. This is then used to determine the kernel of the degeneracy map $J_0(Mp)^2 \rightarrow J_0(Mp^2)$ when $J_0(M) = 0$. We also compute the group structure of $\Phi_{Mp^2,p}$ in some cases.

Let $N \geq 1$ be a positive integer, let $X_0(N)$ be the classical modular curve defined over \mathbb{Q}, and let $J_0(N)$ denote its Jacobian variety, also defined over \mathbb{Q}.

For a prime number p, $X_0(N)$ and $J_0(N)$ are also defined over \mathbb{Q}_p. When $\gcd(p, N) = 1$, $J_0(N)$ has good reduction at p. When p divides N, the special fibre $J_0(N)_{\mathbb{F}_p}$ in the Néron model of $J_0(N)$ over \mathbb{Z}_p is the extension of a finite étale group scheme $\Phi_{N,p}$ by the connected component of identity $J_0(N)^{\circ \varepsilon}_{\mathbb{F}_p}$. The finite group $\Phi_{N,p}$ is called the group of components of the special fibre of the Néron model of $J_0(N)$ over \mathbb{Z}_p. It has been computed for certain values of N with $p \geq 5$ (cf. [11], [2], [10]). When p^2 does not divide N, then $\Phi_{N,p}$ contains a canonical cyclic subgroup $\Phi_{N,p}'$ (see §1 for discussion) such that $\Phi_{N,p}/\Phi_{N,p}'$ has exponent dividing 6.

If N' is a positive divisor of N and D is a positive divisor of N/N', let $\nu_D : X_0(N) \rightarrow X_0(N')$ be the degeneracy map induced by $\tau \mapsto D\tau$. This map induces $\nu_D' : J_0(N') \rightarrow J_0(N)$ and $(\nu_D)_* : J_0(N) \rightarrow J_0(N')$ on the Jacobian varieties. We also use the same notation for the maps they induce on the component groups.

The kernel of $\eta = \prod_{D|N/N'} \nu_D'$ is useful in the study of congruence relations between cusp forms of different levels (cf. [13], [6] and [7]). However, even when this kernel is finite, its determination can be difficult. An understanding of the kernel K of the map η induces on the component groups enables one to have a better control over the kernel of η (cf. loc. cit. as well as Theorem 1 and Proposition 1 below).

The kernel K of η on the component groups is known in some cases. For example, when $N = Mpq$ and $N' = Mp$, where M is a positive integer, $p \geq 5$ is a prime not dividing M and q is a prime such that $\gcd(q, Mp) = 1$, K contains...
\[
\left\{ \left(\frac{x}{x} \right) \in \Phi^2_{M,p,p} \quad \forall \, x \in \Phi_{M,p,p} \right\} \quad ([14], [15]) .
\]

When \(N = p^r \) and \(N' = p \), where \(p \geq 5 \) is a prime, \(K = \left\{ \left(\frac{x_1}{x_r} \right) \in \Phi^r_{p,p} \mid \sum x_i = 0 \right\} \) ([8]). In this paper, we prove

Theorem 1. Let \(M > 1 \) be a positive integer with prime power decomposition \(M = \prod \ell^n_i \) and let \(p \geq 5 \) be a prime not dividing \(M \). Let \(Q = \text{deg}(X_0(M)/X_0(1)) = \prod (\ell + 1)^{n_i-1} \) and let \(\nu \) be the number of primes, distinct from 2 and 3, dividing \(M \). Let \(\sigma_q \) (resp. \(\sigma_p \)) denote the number of points \(x \) of \(X_0(M)(\overline{\mathbb{F}}_p) \) with \(|\text{Aut}(x)| = 4 \) (resp. 6). Let \(g \) be the canonical generator of \(\Phi'_{M,p,p} \) (see §1.1). Then the kernel \(K' \) of the induced map

\[
\eta' = v_1^* \times v_p^* : \Phi'_{M,p,p} \times \Phi_{M,p,p} \longrightarrow \Phi_{M,p,p}
\]

is given in Table 1. In particular, \(v_1^*, v_p^* : \Phi'_{M,p,p} \longrightarrow \Phi_{M,p,p} \) are injective.

For a finite group \(G \) and an integer \(n \), let \(G^{(n)} \) denote the prime-to-\(n \) part of \(G \). In view of the fact that \(\Phi_{M,p,p} / \Phi'_{M,p,p} \) has exponent dividing 6, we have

Corollary 1. We have the equality \(K^{(6)} = K'^{(6)} \). In particular, \(K^{(6)} \) is isomorphic to the prime-to-six part of \(\mathbb{Z}/(p - 1)\mathbb{Z} \).

Corollary 2. For \(X_0(M) \) such that \(\sigma_4 = \sigma_6 = 0 \), we have \(K = K' \).

Proof. This follows from the fact that \(\Phi_{M,p,p} = \Phi'_{M,p,p} \) in these cases (cf. [12], [2]). \(\square \)

Remark. When \(N = Mpq \) and \(N' = Mp \), where \(M, p \) are as in Theorem 1 and \(q \) is a prime such that \(\text{g.c.d.}(q, Mp) = 1 \), it can be shown that \(v_1^*, v_q^* : \Phi^{(6)}_{M,p,p} \longrightarrow \Phi_{Mpq,p} \) are injective, so \(K^{(6)} = \left\{ \left(\frac{x}{x} \right) \mid x \in \Phi^{(6)}_{M,p,p} \right\} \).

Let \(M \geq 1 \) be a positive integer and let \(p \geq 5 \) be a prime not dividing \(M \). Let \(\Sigma(Mp) \) be the Shimura subgroup of \(J_0(Mp) \) (so \(\Sigma(Mp)_{Q_p} \) is the corresponding subgroup scheme of \(J_0(Mp)_{Q_p} \)). Then \(\Sigma(Mp)_{Q_p} \) extends (by the Zariski closure) to a finite subgroup scheme of the Néron model of \(J_0(Mp) \) over \(\mathbb{Z}_p \) (see §2.1, Lemma 1). We denote the special fibre of this latter group scheme by \(\Sigma(Mp)_{\mathbb{F}_p} \). Proposition 11.9 of [11] shows that, for \(M = 1 \), the scheme-theoretic intersection \(\Sigma(p)_{\mathbb{F}_p} \cap J_0(p)^{\delta(p)}_{\mathbb{F}_p} \) is the trivial group scheme over \(\mathbb{F}_p \).

We generalise Proposition 11.9 of [11] by showing:

Theorem 2. Let \(M > 1 \) be a positive integer and let \(p \geq 5 \) be a prime not dividing \(M \). The kernel of the homomorphism \(\Sigma(Mp)^{(6p)}_{\mathbb{F}_p} \longrightarrow \Phi_{M,p,p} \) is isomorphic to \(\Sigma(M)^{(6p)}_{\mathbb{F}_p} \). Equivalently, the scheme-theoretic intersection \(\Sigma(Mp)^{(6p)}_{\mathbb{F}_p} \cap J_0(Mp)^{\delta(p)}_{\mathbb{F}_p} \) is isomorphic to \(\Sigma(M)^{(6p)}_{\mathbb{F}_p} \).

Let \(\tilde{\Phi}_{M,p,p} \) denote the image of \(\Sigma(Mp)^{(6p)}_{\mathbb{F}_p} \) in Theorem 2. When \(N = Mp^r \) (\(r \geq 2 \)) and \(N' = Mp \), the map \(\eta \) induces another map \(\eta : \tilde{\Phi}_{M,p,p} \longrightarrow \Phi_{M',p} \) on the group of components, with kernel \(K \). Theorem 2 leads easily to the following theorem, which is a somewhat weaker generalisation of Theorem 2 of [8].
Table 1. The kernel K'

| Case | σ_4 | σ_6 | $p \mod 12$ | K' | $|K'|$ |
|------|------------|------------|-------------|------|------|
| (I) | 0 | 0 | 1, 5, 7, 11 | \(\begin{cases} \{ \frac{x}{y} \} & x \in \left\langle \frac{Q}{12} \mathbb{g} \right\rangle \text{ (if } M \neq 4) \\ \{ \frac{x}{y} \} & x \in \Phi'_{Mp,p} \text{ (if } M = 4) \end{cases}\) | \(p - 1\) |
| (II) | 0 | 2\(^r\) | 5, 11 | \(\begin{cases} \{ \frac{x}{y} \} & x \in \left\langle \frac{Q}{4} \mathbb{g} \right\rangle \end{cases}\) | \(p - 1\) |
| (III)| 2\(^r\) | 0 | 7, 11 | \(\begin{cases} \{ \frac{x}{y} \} & x \in \Phi'_{Mp,p} \text{ (if } M = 2) \\ \{ \frac{x}{y} \} & x \in \left\langle \frac{Q}{6} \mathbb{g} \right\rangle \text{ (if } M = q^r \text{ or } 2q^r, \text{ where } q \equiv 1 \text{ mod 4 is prime)} \\ \{ \frac{x}{y} \} & x \in \left\langle \frac{Q}{12} \mathbb{g} \right\rangle \text{ (if } M \neq 2) \end{cases}\) | \(2(p - 1)\) |
| (IV) | 2\(^r\) | 2\(^r\) | 1 | \(\begin{cases} \frac{x}{y} \in \left\langle \frac{Q}{4} \mathbb{g} \right\rangle \end{cases}\) | \(p - 1\) |

Theorem 3. If $M > 1$ is a positive integer and $p \geq 5$ is a prime not dividing M, then, for $N = Mp^r$ ($r \geq 3$) and $N' = Mp$, the kernel K contains

\[
\left\{ \begin{array}{c} x_1 \\ \vdots \\ x_r \end{array} \right\} \in \Phi'_{Mp,p} \mid x_i \in \tilde{\Phi}_{Mp,p} \text{ for all } i, \sum x_i = 0 .
\]

Remark. The case $r = 2$ is dealt with in Theorem 1, with a stronger conclusion.

The organisation of this paper is as follows. We prove Theorem 1 in §1. Theorems 2 and 3 are dealt with in §2. Finally in §3, we discuss some consequences and examples.
1. PROOF OF THEOREM 1

We begin with some remarks on the component group $\Phi_{M,p,p'}$ (where $p \geq 5$ is a prime not dividing M) and the canonical cyclic subgroup $\Phi_{M,p,p'}^{C}$ alluded to in the introduction.

1.1. The component group. Let $M \geq 1$ be a positive integer and let $p \geq 5$ be a prime not dividing M. Consider the modular curve $X_0(Mp)$ over \mathbb{Q}_p. The model of the reduction mod p of $X_0(Mp)$ studied by Deligne-Rapoport [1] consists of two irreducible components C_0 and C_1, each a copy of the modular curve $X_0(Mp)$, glued together at the supersingular points. For each singular point x with $e(x) > 1$ by a chain of $e(x) - 1$ copies of the projective line \mathbb{P}^1. Label these additional components by C_2, \ldots, C_n.

Let $L \overset{\text{def}}{=} \bigoplus_{i=0}^{n} \mathbb{Z}[C_i]$ be the free abelian group generated by these components. Let $\iota : L \to L$ be the map defined by $\iota([C_i]) \overset{\text{def}}{=} \sum_{j=0}^{n} (C_i \cdot C_j)[C_j]$. Let $\deg : L \to \mathbb{Z}$ be the obvious degree map. Then $\Phi_{M,p,p}$ contains a canonical cyclic subgroup $\Phi_{M,p,p}^{C}$ generated by the image of $\Phi_{M,p,p}$ of $C_0 - C_1 \in L$. We regard this image of $C_0 - C_1$ as the canonical generator g of $\Phi_{M,p,p}^{C}$. The quotient $\Phi_{M,p,p}/\Phi_{M,p,p}^{C}$ has exponent dividing the lowest common multiple of the $e(x)$'s. In particular, it has exponent dividing 6.

Next consider the modular curve $X_0(Mp^{r})$. The minimal resolution of $X_0(Mp^{r})$ has been constructed by Edixhoven [3]. Let the irreducible components of the minimal resolution be denoted by C_0', C_1', \ldots, C_n' (where C_0', \ldots, C_n' are copies of $X_0(Mp)$ and the remaining ones are copies of \mathbb{P}^1) and let $L' = \bigoplus \mathbb{Z}[C_i']$ be the analogue of L. Similarly, one can define $\iota' : L' \to L'$ and $\deg' : L' \to \mathbb{Z}$ to be the analogues of ι and \deg, respectively. Let $\pi : X_0(Mp^{r}) \to X_0(Mp)$ be a morphism. Then the discussion in [2] shows that there is a commutative diagram

\[
\begin{array}{ccc}
L & \xrightarrow{\iota} & L \\
\downarrow \pi^*_{\text{div}} & & \downarrow \pi^*_{\text{deg}} \\
L' & \xrightarrow{\iota'} & L' \\
\end{array}
\]

where

\[
\pi^*_{\text{div}}([C]) = \pi^{-1}C(\text{divisor on } X_0(Mp^r)), \quad \pi^*_{\text{deg}}([C]) = \sum_{C' \sim C} \deg(\pi|_{C'})(C').
\]

1.2. The intersection matrix. The map $\iota' : L' \to L'$ can be represented as a square matrix once an ordered basis is chosen for L'. This is called the intersection matrix of $J_0(Mp^{r})$. When $r = 2$, the model of reduction mod p of $X_0(Mp^2)$ studied by Katz-Mazur consists of three irreducible components, each a copy of $X_0(Mp)$, glued together at the supersingular points. We let these three components be C_0', C_1', C_2', where C_0' and C_1' both have multiplicity 1 and C_2' has multiplicity $p - 1$. Let C_3', \ldots, C_n' be the additional components, if any, introduced to form the minimal resolution. Using the ordered basis $\{C_0', C_1', C_2', \ldots\}$ for L', the intersection matrix of $J_0(Mp^2)$ is given as follows (according to the cases listed out in Table 1):
Table 2. Values of α, β and δ.

<table>
<thead>
<tr>
<th>Case</th>
<th>(II)</th>
<th>(III)</th>
<th>(IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \mod 12$</td>
<td>$1, 7, 5, 11$</td>
<td>$1, 5, 7, 11$</td>
<td>$1, 5, 7, 11$</td>
</tr>
<tr>
<td>α</td>
<td>$0 \cdot 2^\nu$</td>
<td>$0 \cdot 2^\nu$</td>
<td>$0 \cdot 2^\nu$</td>
</tr>
<tr>
<td>β</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>δ</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(I) It is the 3×3 matrix

$$
\begin{pmatrix}
-\frac{Q(p-1)}{12} & \frac{Q(p-1)}{12} & \frac{Q(p-1)}{12} \\
-\frac{Q(p-1)}{12} & -\frac{Q(p-1)}{12} & \frac{Q(p-1)}{12} \\
\frac{Q(p-1)}{12} & \frac{Q(p-1)}{12} & -\frac{Q(p-1)}{12}
\end{pmatrix}
$$

(II), (III) It is the $(3 + 2^\nu) \times (3 + 2^\nu)$ matrix (with α, β, δ given in Table 2)

$$
\begin{pmatrix}
-\frac{Q(p-1)+\alpha}{12} & \frac{Q(p-1)-\alpha}{12} & \frac{Q(p-1)-\alpha}{12} \\
\frac{Q(p-1)-\alpha}{12} & -\frac{Q(p-1)+\alpha}{12} & \frac{Q(p-1)-\alpha}{12} \\
\frac{Q(p-1)-\alpha}{12} & \frac{Q(p-1)-\alpha}{12} & -\frac{Q(p-1)-\alpha}{12}
\end{pmatrix}
$$

(IV) It is the $(3 + 2 \cdot 2^\nu) \times (3 + 2 \cdot 2^\nu)$ matrix (with α, β, δ given in Table 2)

$$
\begin{pmatrix}
-\frac{Q(p-1)+\alpha}{12} & \frac{Q(p-1)-\alpha}{12} & \frac{Q(p-1)-\alpha}{12} \\
\frac{Q(p-1)-\alpha}{12} & -\frac{Q(p-1)+\alpha}{12} & \frac{Q(p-1)-\alpha}{12} \\
\frac{Q(p-1)-\alpha}{12} & \frac{Q(p-1)-\alpha}{12} & -\frac{Q(p-1)-\alpha}{12}
\end{pmatrix}
$$

1.3. The kernel of η'. Consider (1) with $r = 2$ and π as the two degeneracy maps v_1, v_p. To determine which $(\lambda g, -\mu g) \in \Phi_{M,p} \times \Phi_{M,p}$ actually belongs to the kernel of η', we consider $\eta'((\lambda(C_0 - C_1), -\mu(C_0 - C_1))$ (which belongs to ker(deg')). In fact, $(\lambda g, -\mu g) \in \ker \eta'$ if and only if $\eta'((\lambda(C_0 - C_1), -\mu(C_0 - C_1)) \in \im(i')$.

Since $v_1^*(C_0) = pC_0'$, $v_1^*(C_1) = C_1' + C_2'$, $v_p^*(C_0) = C_0' + C_2'$ and $v_p^*(C_1) = pC_1'$ (cf. (2)), we have

$$(v_1^* \times v_p^*)(\lambda(C_0 - C_1), -\mu(C_0 - C_1)) = (p\lambda - \mu)C_0' + (p\mu - \lambda)C_1' - (\lambda + \mu)C_2'.
$$

It follows that $(\lambda g, -\mu g) \in \ker \eta'$ if and only if

$$
v = (p\lambda - \mu, p\mu - \lambda, -(\lambda + \mu), 0, \ldots, 0)^T
$$

is a \mathbb{Z}-linear combination of the columns of the intersection matrix in §1.2.
Let \(c_i \) denote the \(i \)th column of the intersection matrix. Let \(m \) be the number of columns in the intersection matrix. Let \(\lambda_i \) (\(1 \leq i \leq m \)) be integers and suppose

\[
\nu = \lambda_1 c_1 + \cdots + \lambda_m c_m.
\]

By simple row operations, it is easy to show that the following identities hold:

\[
\mu = \frac{Q}{12} \left(\lambda_3 - \lambda_2(p - 1) \right)
\]

and

\[
\mu - \lambda = \frac{Q(p - 1)}{12}(\lambda_1 - \lambda_2).
\]

Now we prove Theorem 1 case by case.

(I) In this case, the order of \(\Phi'_{M,p,p} \) is \(\frac{Q(p-1)}{12} \). Suppose that \(M \neq 4 \). Then 12 divides \(Q \). From (4), \(\mu \in \frac{Q}{12}\mathbb{Z} \). From (5), \(\mu \equiv \lambda \mod \frac{Q(p-1)}{12} \). Therefore the kernel \(K' \) is contained in \(\left\{ \left(\frac{x}{Q} \right) \mid x \in \langle \frac{Q}{12}g \rangle \right\} \). Taking \(\lambda_1 = 1, \lambda_2 = 0 \) and \(\lambda_3 = 1 \) in (3), we obtain \(\mu = \frac{Q}{12} \) and \(\lambda = \frac{Q}{12} - \frac{Q(p-1)}{12} \), so \(K' = \left\{ \left(\frac{x}{Q} \right) \mid x \in \langle \frac{Q}{12}g \rangle \right\} \).

When \(M = 4 \), then \(Q = 6 \) and \(\Phi'_{M,p,p} \) has order \(\frac{p-1}{2} \). The identity (5) implies \(\mu \equiv \lambda \mod \frac{p-1}{2} \), so \(K' \subseteq \left\{ \left(\frac{x}{p} \right) \mid x \in \Phi'_{M,p,p} \right\} \). Taking \(\lambda_3 = 2, \lambda_2 = 0 = \lambda_1 \), we get \(\mu = \lambda = 1 \), so \(K' = \left\{ \left(\frac{x}{p} \right) \mid x \in \Phi'_{M,p,p} \right\} \).

(II) When \(p \equiv 5 \) or 11 \(\mod 12 \), the order of \(\Phi'_{M,p,p} \) is \(\frac{Q(p-1)}{4} \). We have the additional identities

\[
\lambda_1 + \lambda_2 + \lambda_3 - 3\lambda_i = 0 \quad (4 \leq i \leq 3 + 2^\nu).
\]

In particular, all \(\lambda_i \) (\(4 \leq i \leq 3 + 2^\nu \)) are equal. Substituting (6) into (4), we obtain, for example, \(\mu = \frac{Q}{12} \left[3\lambda_1 - \lambda_2(p + 1) - (\lambda_1 - \lambda_2) \right] \).

Since \(\text{g.c.d.}(Q,12) = 4 \) in this case and \(\mu \in \mathbb{Z} \), it follows that \(\lambda_1 - \lambda_2 \in 3\mathbb{Z} \). Putting this into (5), we get \(\mu \equiv \lambda \mod \frac{Q(p-1)}{4} \). Mimicking the method in (I) with \(\lambda_1 = \lambda_2 = 0, \lambda_3 = 3 \) and \(\lambda_i = 1 \) (\(i \geq 4 \)), Theorem 1 follows in this case.

When \(p \equiv 1 \) or 7 \(\mod 12 \), the order of \(\Phi'_{M,p,p} \) is \(\frac{Q(p-1)}{12} \). In this case, \(\text{g.c.d.}(Q,12) = 4 \) too. Instead of (6), we have the additional identities

\[
\lambda_3 - 3\lambda_i = 0 \quad (4 \leq i \leq 3 + 2^\nu).
\]

Substituting into (4) gives \(\mu = \frac{Q}{4} \left[\lambda_1 - \lambda_2 \left(\frac{p-1}{4} \right) \right] \in \frac{Q}{4}\mathbb{Z} \). Trying with \(\lambda_1 = \lambda_2 = 0, \lambda_3 = 3 \) and \(\lambda_i = 1 \) (\(i \geq 4 \)) shows that \(K' = \left\{ \left(\frac{x}{Q} \right) \mid x \in \langle \frac{Q}{4}g \rangle \right\} \).

(III) This case is very similar to (II), so we simply give a sketch of the argument used.

When \(p \equiv 7, 11 \mod 12 \), the order of \(\Phi'_{M,p,p} \) is \(\frac{Q(p-1)}{6} \). Instead of (6), we have

\[
\lambda_1 + \lambda_2 + \lambda_3 - 2\lambda_i = 0 \quad (4 \leq i \leq 3 + 2^\nu).
\]

Then we split into three cases:

(i) if \(M = 2 \), then \(Q = 3 \) and \(\text{g.c.d.}(Q,12) = 3 \);
(ii) if \(M = q^r \) or \(2q^r \) (\(q \equiv 1 \mod 4 \) is a prime), then \(\text{g.c.d.}(Q,12) = 6 \);
(iii) if \(M \) has at least two odd prime divisors, then \(\text{g.c.d.}(Q,12) = 12 \).
Mimicking (II) gives the desired answer, except for a slight complication in the case (iii).

If $\lambda_1 - \lambda_2 \not\in 2\mathbb{Z}$, then $\mu \equiv \lambda \mod \frac{Q(p-1)}{6}$ and $\mu \in \mathbb{Z}$. If $\lambda_1 - \lambda_2 \in 2\mathbb{Z}$, then $\mu \equiv \lambda + \frac{Q(p-1)}{12} \mod \frac{Q(p-1)}{6}$. This case can indeed occur. For example, take $\lambda_1 = 1$, $\lambda_2 = 0$, $\lambda_3 = 1$, $\lambda_i = 1$ ($i \geq 4$).

When $p \equiv 1, 5 \mod 12$, the order of $\Phi^\#_{M, p}$ is $\frac{Q(p-1)}{12}$. Instead of (7), we have

\[\lambda_3 - 2\lambda_i = 0 \quad (4 \leq i \leq 3 + 2^r).\]

We only need to consider two cases: when $M = 2$ and when $M \neq 2$.

(IV) Again, except for some details, the strategy of proof in this case is similar to that above. Information that differs from above is given in the following table:

<table>
<thead>
<tr>
<th>$p \mod 12$</th>
<th>$\frac{Q(p-1)}{12}$</th>
<th>Additional Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{Q(p-1)}{12}$</td>
<td>$\lambda_3 = 2\lambda_i$ (4 ≤ $i \leq 3 + 2^r$)
 (so $\lambda_i = 3z, \lambda_j = 2z$ for some $z \in \mathbb{Z}$)</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{Q(p-1)}{4}$</td>
<td>$\lambda_3 = 2\lambda_i$ (4 ≤ $i \leq 3 + 2^r$)
 $\lambda_1 + \lambda_2 + \lambda_3 = 3\lambda_j$ (4 ≤ $i \leq 3 + 2^r$)</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{Q(p-1)}{6}$</td>
<td>$\lambda_1 + \lambda_2 + \lambda_3 = 2\lambda_i$ (4 ≤ $i \leq 3 + 2^r$)
 $\lambda_3 = 3\lambda_j$ (4 + 2^r ≤ $j \leq 3 + 2^r$)</td>
</tr>
<tr>
<td>11</td>
<td>$\frac{Q(p-1)}{2}$</td>
<td>$\lambda_1 + \lambda_2 + \lambda_3 = 2\lambda_i = 3\lambda_j$ (4 ≤ $i \leq 3 + 2^r$ < $j \leq 3 + 2^r$)
 (so $\lambda_i = 3z, \lambda_j = 2z$ for some $z \in \mathbb{Z}$)</td>
</tr>
</tbody>
</table>

When $M = q^r$ ($q \equiv 1 \mod 12$ is a prime), $\text{g.c.d.}(Q, 12) = 2$. Otherwise, $\text{g.c.d.}(Q, 12) = 4$.

This completes the proof of Theorem 1.

2. THE PART OF THE SHIMURA SUBGROUP ON THE CONNECTED COMPONENT

We continue to let $M > 1$ be an integer and let $p \geq 5$ be a prime not dividing M. In this §, we prove Theorem 2. This result is then used to find a lower bound for K.

2.1. Extension of the Shimura subgroup to the Néron model. The content of this § is due to Bas Edixhoven.

Lemma 1. Let $M > 1$ be an integer and let $p \geq 5$ be a prime not dividing M. The Shimura subgroup $\Sigma(Mp)_{\mathbb{Q}_p}$ extends (by the Zariski closure) to a finite subgroup scheme of the Néron model of $J_0(Mp)$ over \mathbb{Z}_p.

Proof. Since $p \geq 5$, there is at most one extension of $\Sigma(Mp)_{\mathbb{Q}_p}$ to \mathbb{Z}_p. There is indeed one such extension, and it is multiplicative, since $\Sigma(Mp)_{\mathbb{Q}_p}$ is the Cartier dual of a constant group scheme. Denote the extension by $\Sigma(Mp)$.

The prime-to-p part of $\Sigma(Mp)_{\mathbb{Q}_p}$ is constant over the maximal unramified extension of \mathbb{Q}_p, so it is étale, and hence has finite Zariski closure in $J_0(Mp)$.

Since $\Sigma(Mp)_{\mathbb{Q}_p}$ is of multiplicative type and that $p \geq 5$, its p-part has no nontrivial unramified quotient. Since $J_0(Mp)_{\mathbb{Q}_p}$ has semistable reduction and the action of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ on $J_0(Mp)_{\mathbb{Q}_p}[p]/J_0(Mp)(\mathbb{Z}_p)[p]$ is unramified, an argument analogous to the one in the proof of Lemma 6.2 of [14] shows that the Zariski closure of the p-part in $J_0(Mp)$ is finite. \[\square\]
Remark. Let \(N \geq 5 \) be a prime, let \(S = \text{Spec}(\mathbb{Z}) \) and \(S' = \text{Spec}(\mathbb{Z}[\frac{1}{N}]) \). Let \(n = \frac{N-1}{\text{c.c.}(N)} \). As in [11] page 99, let \(X_1(N)_{S'} \to X_0(N)_{S'} \) be the maximal étale extension intermediate to \(X_1(N) \to X_0(N) \), and let \(U \) be the covering group of this étale subcovering. First we note that the definition of the Cartier dual of \(X \).

2.2. Proof of Theorem 2. Let \(\mathbb{Q}_p^{unr} \) denote the maximal unramified extension of \(\mathbb{Q}_p \). The points of the prime-to-\(p \) part of the Shimura subgroup \(\Sigma(Mp)(\mathbb{Q}_p) \) are defined over \(\mathbb{Q}_p^{unr} \). The “reduction mod \(p \)” yields an isomorphism \(\Sigma(Mp)(\mathbb{Q}_p^{unr})(\mathbb{Q}_p) \cong \Sigma(Mp)(\mathbb{Q}_p)(\mathbb{Q}_p) \) (cf. [4], Appendix). Similarly, we have isomorphisms \(\Sigma(M)(\mathbb{Q}_p^{unr})(\mathbb{Q}_p) \cong \Sigma(M)(\mathbb{Q}_p)(\mathbb{Q}_p) \) and \(\Sigma(p)(\mathbb{Q}_p^{unr}) \cong \Sigma(p)(\mathbb{Q}_p) \).

We recall from a special case of Theorem 10 of [7] that there is an isomorphism

\[\Sigma(M)(\mathbb{Q})^{(6p)} \times \Sigma(p)(\mathbb{Q})^{(6p)} \cong \Sigma(M)(\mathbb{Q})^{(6p)}, \]

obtained from the degeneracy maps. This isomorphism is invariant under the action of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \). Working over extensions of \(\mathbb{Q}_p \), we get

\[\Sigma(M)(\mathbb{Q}_p^{unr})^{(6p)} \times \Sigma(p)(\mathbb{Q}_p^{unr})^{(6p)} \cong \Sigma(M)(\mathbb{Q}_p^{unr})^{(6p)}, \]

and hence

\[\Sigma(M)(\mathbb{F}_p)^{(6p)} \times \Sigma(p)(\mathbb{F}_p)^{(6p)} \cong \Sigma(M)(\mathbb{F}_p)^{(6p)} \]

Since \(J_0(M) \) has good reduction mod \(p \), we have a commutative diagram

\[
\begin{array}{c}
\Sigma(M)(\mathbb{F}_p)^{(6p)} \times \Sigma(p)(\mathbb{F}_p)^{(6p)} \\
\downarrow \\
\Phi_{M,p} \times \Phi_{M,p}
\end{array}
\]

(11)

Theorem 2 follows upon combining Theorem 1, (10), (11) and Proposition 11.9 of [11].

2.3. Proof of Theorem 3. The degeneracy maps \(v_1^*, \ldots, v_{p-1}^* : J_0(Mp) \to J_0(Mp') \) are injective and they coincide with one another on \(\Sigma(Mp) \) ([9], Remark after Theorem 5). By the discussion in §2.2, these degeneracy maps induce injections \(v_1^*/\mathbb{F}_p, \ldots, v_{p-1}^*/\mathbb{F}_p : \Sigma(Mp)(\mathbb{F}_p)^{(6p)} \to J_0(Mp')(\mathbb{F}_p) \) and these induced maps are identical. Then there is a commutative diagram

\[
\begin{array}{c}
\Sigma(Mp)(\mathbb{F}_p)^{(6p)} \times \cdots \times \Sigma(Mp)(\mathbb{F}_p)^{(6p)} \\
\downarrow \\
\Phi_{M,p} \times \cdots \times \Phi_{M,p}
\end{array}
\]

(12)

The vertical maps come from the projection of the special fibre of the Néron model onto the group of components.

Theorem 3 now follows from Theorem 2 and the fact that \(v_1^*/\mathbb{F}_p, \ldots, v_{p-1}^*/\mathbb{F}_p \) are identical on \(\Sigma(Mp)(\mathbb{F}_p)^{(6p)} \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. Applications

We give two examples of applications of the results proved above.

Example 1. Theorem 1 can be used to generalise Theorem 2 of [7].

Proposition 2. Let \(M \) be a positive integer such that \(J_0(M) = 0 \) and let \(p \geq 5 \) be a prime not dividing \(M \). Let \(K_\eta \) be the kernel of \(\eta = v_1^* \times v_2^* : J_0(Mp) \to J_0(Mp^2) \), and let \(K_0 \) be the \(\eta \)-group.

1. For \(M \in \{1, 2, 3, 4, 5, 6, 8, 9, 12, 16, 18\} \), we have \(K_\eta = K_0 \) (cf. [7], Theorem 2).
2. If \(M = 10 \) or 25, then \(K_0 \subseteq K_\eta \) and \(K_0, K_\eta \) are equal up to a 2-group.
3. If \(M = 7 \), then \(K_0 \subseteq K_\eta \) and \(K_0, K_\eta \) are equal up to a 3-group.
4. If \(M = 13 \), then \(K_0 \subseteq K_\eta \) and their prime-to-six parts are equal.

Proof of Proposition 1. An argument similar to the one used in [7] may be repeated here. Since \(K_0 \subseteq K_\eta \) and there is a natural inclusion of \(K_\eta \) into \(K \), it suffices to compare the orders of \(K_0 \) and \(K \). The former is given in [9] while the latter is given by Theorem 1.

Remark. As in [7], Proposition 1 implies the existence of congruence relations between certain weight-2 cusp forms.

Example 2. Using the intersection matrix given in \S 1.2, one can in theory compute the component group \(\Phi_{Mp^2, p} \). We give the example of \(\Phi_{Mp^2, p} \) in the case (I).

It is routine to check that \(\Phi_{Mp^2, p} \) is generated by the images of \(C_0'' - pC_1' + C_2' \) and \((p - 1)C_1' - C_2' \). Furthermore, it is easy to verify that the \(\mathbb{Z} \)-span of the columns of the intersection matrix of \(J_0(Mp^2) \) in case (I) has a \(\mathbb{Z} \)-basis consisting of \(\left\{ \begin{pmatrix} \frac{Q(p-1)}{Q(p+1)} \\ \frac{Q(p-1)}{Q(p+1)} - \frac{Q(p+1)}{12} \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{Q(p-1)}{Q(p+1)} - \frac{Q(p+1)}{12} \end{pmatrix} \right\} \). It then follows immediately that

Proposition 2. Let \(M, p, Q, \ell \) and \(n_\ell \) be as in Theorem 1. Suppose that both of the following conditions hold:

(i) either \(n_2 > 1 \) or there exists \(\ell \equiv -1 \mod 4 \) that divides \(M \);
(ii) either \(n_3 > 1 \) or there exists \(\ell \equiv -1 \mod 3 \) that divides \(M \).

Then the component group \(\Phi_{Mp^2, p} \) is isomorphic to \(\mathbb{Z}/\frac{Q(p-1)}{12}\mathbb{Z} \oplus \mathbb{Z}/\frac{Q(p+1)}{12}\mathbb{Z} \).

References

Department of Mathematics, National University of Singapore, Singapore 119260, Republic of Singapore.

E-mail address: matlings@nus.edu.sg