On component groups of $J_0(N)$ and degeneracy maps
HTML articles powered by AMS MathViewer
- by San Ling
- Proc. Amer. Math. Soc. 126 (1998), 3201-3210
- DOI: https://doi.org/10.1090/S0002-9939-98-04592-4
- PDF | Request permission
Abstract:
For an integer $M>1$ and a prime $p \geq 5$ not dividing $M$, we study the kernel of the degeneracy map $\Phi _{Mp,p}^r \rightarrow \Phi _{Mp^r, p}$, where $\Phi _{Mp,p}$ and $\Phi _{Mp^r, p}$ are the component groups of $J_0(Mp)$ and $J_0(Mp^r)$, respectively. This is then used to determine the kernel of the degeneracy map $J_0(Mp)^2 \rightarrow J_0(Mp^2)$ when $J_0(M) =0$. We also compute the group structure of $\Phi _{Mp^2, p}$ in some cases.References
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 143–316 (French). MR 0337993
- Bas Edixhoven, L’action de l’algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est “Eisenstein”, Astérisque 196-197 (1991), 7–8, 159–170 (1992) (French, with English summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141457
- Bas Edixhoven, Minimal resolution and stable reduction of $X_0(N)$, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 1, 31–67 (English, with French summary). MR 1056773, DOI 10.5802/aif.1202
- Nicholas M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481–502. MR 604840, DOI 10.1007/BF01394256
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- San Ling, Congruences between cusp forms and the geometry of Jacobians of modular curves, Math. Ann. 295 (1993), no. 1, 111–133. MR 1198844, DOI 10.1007/BF01444879
- San Ling, Shimura subgroups and degeneracy maps, J. Number Theory 54 (1995), no. 1, 39–59. MR 1352635, DOI 10.1006/jnth.1995.1100
- S. Ling, On the Q-rational cuspidal subgroup and the component group of $J_0(p^r)$. Israel J. Math. 99 (1997), 29–54.
- San Ling and Joseph Oesterlé, The Shimura subgroup of $J_0(N)$, Astérisque 196-197 (1991), 6, 171–203 (1992) (English, with French summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141458
- Dino J. Lorenzini, Torsion points on the modular Jacobian $J_0(N)$, Compositio Math. 96 (1995), no. 2, 149–172. MR 1326710
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
- Michel Raynaud, Jacobienne des courbes modulaires et opérateurs de Hecke, Astérisque 196-197 (1991), 9–25 (1992) (French, with English summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141454
- Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 503–514. MR 804706
- K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
- Kenneth A. Ribet, On the component groups and the Shimura subgroup of $J_0(N)$, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 6, 10. MR 993107
Bibliographic Information
- San Ling
- Email: matlings@nus.edu.sg
- Received by editor(s): April 7, 1997
- Additional Notes: It is a pleasure to thank Bas Edixhoven for patiently correcting the author’s initial erroneous understanding of some concepts and for the content of §2.1.
- Communicated by: David E. Rohrlich
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 3201-3210
- MSC (1991): Primary 11G18, 14H40
- DOI: https://doi.org/10.1090/S0002-9939-98-04592-4
- MathSciNet review: 1469421