An easier proof of the maximal arcs conjecture
HTML articles powered by AMS MathViewer
- by Simeon Ball and Aart Blokhuis
- Proc. Amer. Math. Soc. 126 (1998), 3377-3380
- DOI: https://doi.org/10.1090/S0002-9939-98-04653-X
- PDF | Request permission
Abstract:
It was a long-standing conjecture in finite geometry that a Desarguesian plane of odd order contains no maximal arcs. A rather inaccessible and long proof was given recently by the authors in collaboration with Mazzocca. In this paper a new observation leads to a greatly simplified proof of the conjecture.References
- S. Ball, A. Blokhuis and F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist, Combinatorica 17, (1997), 31–41.
- Aldo Cossu, Su alcune proprietà dei $\{k,\,n\}$-archi di un piano proiettivo sopra un corpo finito, Rend. Mat. e Appl. (5) 20 (1961), 271–277 (Italian). MR 139995
- R. H. F. Denniston, Some maximal arcs in finite projective planes, J. Combinatorial Theory 6 (1969), 317–319. MR 239991, DOI 10.1016/S0021-9800(69)80095-5
- László Rédei, Lückenhafte Polynome über endlichen Körpern, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 42, Birkhäuser Verlag, Basel-Stuttgart, 1970 (German). MR 0294297, DOI 10.1007/978-3-0348-4006-4
- J. A. Thas, Construction of maximal arcs and partial geometries, Geometriae Dedicata 3 (1974), 61–64. MR 349437, DOI 10.1007/BF00181361
- J. A. Thas, Some results concerning $\{(q+1)(n-1);\,n\}$-arcs and $\{(q+1)$ $(n-1)+1;\,n\}$-arcs in finite projective planes of order $q$, J. Combinatorial Theory Ser. A 19 (1975), no. 2, 228–232. MR 377682, DOI 10.1016/s0097-3165(75)80012-4
- J. A. Thas, Construction of maximal arcs and dual ovals in translation planes, European J. Combin. 1 (1980), no. 2, 189–192. MR 587531, DOI 10.1016/S0195-6698(80)80052-7
Bibliographic Information
- Simeon Ball
- Affiliation: Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Aart Blokhuis
- Affiliation: Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Received by editor(s): March 23, 1997
- Communicated by: Jeffry N. Kahn
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 3377-3380
- MSC (1991): Primary 51E21; Secondary 05B25
- DOI: https://doi.org/10.1090/S0002-9939-98-04653-X
- MathSciNet review: 1476115