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ABSTRACT. We introduce a notion of quasinormality for a nested pair S C R of
ergodic discrete hyperfinite equivalence relations of type II;. (This is a natural
extension of the normality concept due to Feldman-Sutherland-Zimmer.) Such
pairs are characterized by an irreducible pair FF C @ of countable amenable
groups or rather (some special) their Polish closure F C Q. We show that
“most” of the ergodic subrelations of R are quasinormal and classify them. An
example of a nonquasinormal subrelation is given. We prove as an auxiliary
statement that two cocycles of R with dense ranges in a Polish group are
weakly equivalent.

0. INTRODUCTION

It is well known that two ergodic finite measure-preserving actions of countable
amenable groups are orbit equivalent [Dy], [CFW]. This can be rephrased in equiv-
alent terms of measured equivalence relations [FM]: there exists a unique (up to
isomorphism) hyperfinite discrete ergodic equivalence relation, say R, of type I1;.
A natural subsequent problem that arises here is to study subrelations of R and
this is the main concern of the present paper.

It was shown in [FSZ] how to associate a countable index set J and a cocycle
0:R — X(J) to any pair S C R of discrete ergodic type II; equivalence relations,
where 3(J) is the full permutation group of J. The cardinality of J is called the
index of S C R and is related closely to the Jones index in the study of sub-
von-Neumann-algebras [Jo]. The cocycle o is called the index cocycle of S C R.
The weak equivalence class of ¢ depends only on the isomorphism class of the pair
SCR.

J. Feldman, C. E. Sutherland and R. J. Zimmer provided an elegant classification
of ergodic hyperfinite pairs S C R in the following two cases: (a) S is normal,
(b) S is of finite index in R [FSZ]. Remark that the case (b) was considered
earlier by M. Gerber in a different context—she classified the finite extensions of
ergodic probability-preserving transformations up to the “factor orbit equivalence”
[Ge]. The purpose of this paper is to extend the above results to a wider class of
subrelations, namely quasinormal ones.

We call § quasinormal if o (or its restriction to S) is regular, i.e. ¢ is cohomol-
ogous to a cocycle with dense range in a closed subgroup of ¥(J). The concept of
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quasinormality was introduced in a different way in a previous paper of the author
[Da, §4], where the problem of genericity for extensions of S-cocycles to R-cocycles
with values in amenable locally compact groups was discussed (see also [GLS]). We
show that the above definition is equivalent to [Da, Definition 4.1].

Before proceeding with the statements of our main results, we recall some stan-
dard orbit theory notation. Let P be a discrete measured equivalence relation on a
standard probability space (X, 9, ). By the full group [P] we mean the group of
automorphisms of X whose orbits are contained in P-classes. The normalizer N[R]
of [P] is the group of automorphisms of X which preserve P (see §2 for rigorous
definitions). Two R-subrelations S; and Sy are R-conjugate if S; = (T x T)S, for
a transformation T € N[R].

We say that a pair FF C @Q of Polish groups is #rreducible if F' contains no
nontrivial closed normal subgroups of Q.

Theorem 0.1 (Canonical Form for Quasinormal Subrelations). Let S be
an ergodic quasinormal subrelation of R. There exist an ergodic subrelation P C S,
a countable amenable group Q@ C N[P], and a subgroup F of Q such that QN [P] =
{Id}, F C Q is irreducible, R is generated by P and Q and S is generated by P
and F. Moreover, the index cocycle may be realized as 0 = po 6 : R — S(F\G),
where 6 : R — @ is given by 0(x, qy) = q for all (x,y) € P and q € Q, and p is the
Cayley representation of Q in Z(F\Q) as right translations.

Notice that the pair F' C @ is not determined uniquely (up to isomorphism) by
S. That is why we need to introduce some special equivalence relation for these
objects as follows. Denote by Q (resp. F) the closure of p(Q) (resp. the closure
of p(F)) in X(F\Q) endowed with the usual Polish topology. It is easy to see that
F=1{qeQ]|qF)=F}. Hence F is an open subgroup of Q and F C Q is an
irreducible pair of Polish groups.

Definition 0.2. We say that two irreducible pairs of countable groups F; C Ql
and F» C 2 are weakly isomorphic if there exists a continuous isomorphism of @),
onto (), which takes F'y onto F's.

Theorem 0.3 (Classification of Quasinormal Subrelations). There is a bi-
jective correspondence between the ergodic quasinormal subrelations S of R (up to
R-conjugacy) and the weak isomorphism classes of irreducible pairs of countable
amenable groups F' C Q. Furthermore, F' C @ is related to S as described in
Theorem 0.1.

Notice that the normal subrelations are quasinormal—they correspond exactly
to the case where F' is trivial. Clearly, the subrelations of finite index are also
quasinormal, since the index cocycle as well as every cocycle with values in a finite
group is regular. In both cases @ = Q, FF = F and Theorem 0.3 gives [FSZ,
Theorems 3.1, 3.2].

The outline of the paper is as follows. §1 is of a preliminary nature. We study
cocycles of R with values in Polish groups and extend some results from [GS], where
the groups were assumed to be locally compact. In particular, we prove that two
cocycles with dense ranges in a Polish group are weakly equivalent. The second
section introduces the idea of a quasinormal pair § C R (cf. [Da, §4]). The proofs
of Theorems 0.1 and 0.3 and related problems are contained here. In the final §3,
we show that a “typical” (in the Baire category sense) ergodic subrelation of R
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is quasinormal but nonnormal. We also provide an example of a nonquasinormal
subrelation.

Remark that throughout this paper equivalence relations are of type 11;. How-
ever, all the results are also valid for type Il equivalence relations with minor
modifications of the arguments. We hope to treat the type III case in a later
paper.

1. COCYCLES OF MEASURED EQUIVALENCE RELATIONS
WITH VALUES IN POLISH GROUPS

We begin this section with some background on orbit theory. Let (X,9B,u)
be a standard probability space. Denote by Aut(X,, u) the group of its auto-
morphisms, i.e. Borel, one-to-one, onto, u-preserving transformations; we do not
distinguish between two of them which agree on a p-conull subset. Let R C X x X
be a Borel discrete (i.e. each equivalence class is countable) equivalence relation.
We shall assume that R is u-preserving, i.e. there exists a countable subgroup
I' € Aut(X, u) such that R is the I'-orbital equivalence relation. We endow R
with the induced Borel structure and the o-finite measure ug, dur(z,y) = du(z),
(z,y) € R. Write also

[R] ={q € Aut(X, ) | (qz,z) € R for p-a.a. x € X},
N[R] = {q € Aut(X, 1) | (qz,qy) € R for pr-a.a. (x,y) € R}

for the full group of R and the normalizer of [R] respectively. R is called hyperfinite
if it can be generated by a single automorphism.

Let G be a Polish group with 15 the identity of G. A Borel map a: R — G is
a (1-)cocycle of R if

alz,y)aly, z) = a(z, 2) for a.a. (x,y), (y,2) € R.

We do not distinguish between two cocycles if they agree pug-a.e. Two cocycles,
a,f: R — G, are cohomologous (a = f3), if

a(z,y) = ¢(2) "' Bz, y)ely)  for pr-aa. (z,y),

where ¢ : X — G is a Borel function (we call it a transfer function from « to 3).
A cocycle is a coboundary if it is cohomologous to the trivial one.

Two cocycles o, 3 : R — G are weakly equivalent if there is a transformation
T € N[R] such that a = (o T, where the cocycle § : R — G is defined by
BoT(x,z)=0(Tx,Tz).

We assume from now on that R is ergodic, i.e. every R-saturated Borel subset
is p-null or p-conull.

We say that « has dense range in G if for every A € B, u(A) > 0, and an open
subset O C G there exists B € B and a transformation ¢ € [R] with p(B) > 0,
BUgB C A, and a(x,qx) € O for all z € B.

Proposition 1.1. Let F, H be closed subgroups of G, and let two cocycles «, 3 :
R — G take values and have dense ranges in F and H respectively. If a =~ 3, then
F and H are conjugate in G.

Proof. Let a(z,y) = ¢(z) 7' B(z,y)d(y) at ur-a.e. (z,y) € R for a Borel function
¢ : X — G. Take any proper value go € G of ¢, which means that u(¢=1(0)) > 0
for every neighborhood O of go. We shall prove that F' = g, 'Hgo. Given any
g € H and a neighborhood V' of gy 1990, we choose neighborhoods U of gy and
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W of g with U7'WU C V. Since 3 has dense range in H, there exists a Borel
subset A C X and a transformation ¢ € [R] such that u(A4) >0, AUgA C ¢~ 1(U)
and B(z,qx) € W for all z € A. Recall that a(R) C F and hence V N F # (.
Since V' is an arbitrary neighborhood of g, 1990, we deduce that 9o lggo € F. Thus
do 'Hgo C F. The converse inclusion is established in a similar way. O

Remark 1.2. It is easy to deduce from the above proof that the transfer function ¢
is of the form ¢(z) = (x)g’ a.e. for some ¢’ € G and a Borel function ¢ : X —
Ng(H), where Ng(H) :={g € G | gHg~! = H} is the normalizer of H in G.

Definition 1.3. A cocycle a : R — G is called regular if it is cohomologous to a
cocycle which takes values and has dense range in a closed subgroup H of G.

We denote by () the conjugacy class of H, i.e. (a) = {gHg ' | g€ G}. It
is well defined by Proposition 1.1. It is obvious that given a cocycle a with dense
range in G, then aoT also has dense range in G for every transformation T € N[R].
We deduce from this fact and Proposition 1.1

Corollary 1.4. Let « and 8 be weakly equivalent cocycles. If « is reqular, then so

is 8 and {a) = (B).

Recall that an equivalence relation P is of type [ if there is a Borel subset A C X,
w(A) > 0, such that for a.e. € X there is a unique y € A with (z,y) € R. We
call such A a P-fundamental domain. It is well known that every cocycle of an
equivalence relation of type I is a coboundary [FM].

Lemma 1.5 (cf. [GS, Proposition 1.1]). Let R = |J,—, R for an increasing se-
quence of type I equivalence relations R1 C Ro C .... Given two cocycles a, 3 :
R — G, consider two sequences of Borel maps an,b, : X — G such that a(z,y) =
an(®)an(y)~t, Bz, y) = bp(2)by(y)~t for a.e. (z,y) € Ry. Define a sequence of
maps fn : X — G by setting fn(x) = an(x)by,(x)~L. If f,, converges a.e. to a map
¢:X — G asn — oo, then a(z,y) = ¢(z)B(z,y)d(y) ™t for a.e. (z,y) € R.

Proof. For a.e. (z,y) € R, and every m > n we have

fm(2)B(2, y) fm (y)_l = am(:z:)bm(x)_lbm(x)bm(y)_lbm(y)am(y)_l

= am(2)am(y) " = a(z,y),

since R,, C R, Pass to the limit to obtain ¢(z)8(z,y)¢(y) ™! = a(x,y) for a.e.
(x,y) € Rp, neN. |

Proposition 1.6. Let R be hyperfinite and G’ a countable dense subgroup of G.
Given a cocycle a: R — G, there exists a cocycle 8 = « with 3(R) C G'.

Proof. Since R is hyperfinite, there exists an increasing sequence of type I equiv-
alence relations Ry C Ro C ... with R = Uiozl R.,. Let F,, stand for an R,-
fundamental domain. We also put Fy = X. Define a Borel map T, : X — F,, by
setting T,z = y if (x,y) € R,. Notice that T, is Ry-invariant—i.e. T,z = T,y for
a.e. (x,y) € R,—and

(1-1) oz, y) = alz, Tnr)a(Thz, Tny)o(Thy, y) = a(z, Tyx)oly, Tyy) ™
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for a.e. (x,y) € R,,. Consider the family of Borel maps a,, : F,_1 — G given by
an(z) = a(z, T,z). Then

(1-2)
alz, Thr) = a(z, Tiax)a(Tiz, Tex) ... a(Th_12, Trx)

=ai(x)as(Thz) ... an(Th-12)

for a.e. & € X. Conversely, it is easy to see that an arbitrary family of Borel
functions a,, : F,,—1 — G, n € N, determines a cocycle a : R — G by (1-1) and
(1-2).

Let {W,}52; be a fundamental system of neighborhoods of 15 with the following
properties: W, ' = W, and W, 1W,y1W,41 C Wy, n € N. Enumerate the
elements of G': G’ = {¢;}22,. For each n € N, we have G = Ufil W,gi- Hence
there is an m,, € N such that u(4,) >1—27", where

A, ={z e X |a(z,T,x) € U Wit29:}-
i=1
Let V,, be a neighborhood of 14 with giVngi_1 CcWyforalli=1,...,mu_2,n > 2.
Take a family of Borel maps by, : F,_1 — G’ such that a, (z)b,(z)~! € V,,41 for all
x € F,_1. This family determines a cocycle 8 : R — G. We have for £k € N and
S m@—‘_k_l Az

frsr = alz, Tixz)B(z, Thipz) ™"
= (@, Tpii—12) sk (Tt b—12) bk (Tnsn—12) " B, Trgpr—12) "
€ (@, Tngk—12) Vg1 8@, Tnyp—12) ™"

Ya(z, Tnir—12)B(x, Tpip—12) "

—1

=a(z, Thsr-12)Vosrrra(z, Thyk_1z)”
C Wikt 1 Wttt Wognrra(@, Togp—12) (2, Tt i—17)
C Wn_HCa(;v,Tn+k_1x)ﬁ(ac,Tn+k_1x)_l C...

C WoiiWaikot .. Woprolz, Tnz)B(x, Tnz) ™t € Wi, fr(2).

Since p(N/AF14) > 1 -2 —2 -1 ... g n-ktl > | _9-ntl | the
sequence f, converges in measure as n — co. Hence a subsequence of f, converges
a.e. and o = # by Lemma 1.5. |

Remark 1.7. If G’ is normal in G, then the conclusion of Proposition 1.6 follows
from the Connes-Krieger cohomology lemma (see [Su], [JT]). For G locally compact
(and any G’) the conclusion of the proposition was proved in [GS, Proposition 1.2].
We modified the argument of V. Ya. Golodets and S. D. Sinelshchikov in such a
way to avoid the use of the local compactness.

Proposition 1.8. Let R be hyperfinite. Given a cocycle o : R — G with dense
range in G, there exists a cocycle 5 =~ a such that {(x,y) € R | B(x,y) = 1g} is an
ergodic subrelation of R.

Proof. By virtue of Dye’s theorem [Dy] we may assume that (X, %, ) and R are
of the following special form:
(a) (X,u) = ({0,1}, )N, where X is the equidistribution on {0,1}, i.e. A(0) =
A1) = 0.5,
(b) R =y~ Rn, where R, = {(z,y) € X x X | z; =y; for all i > n}.
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Let {W,,}2°; be a fundamental system of neighborhoods of 1¢ with the properties
as above. We construct inductively an increasing sequence & C So C ... of type I
subrelations of R. Describe in general the n-th step.

Let Fy, := {x | ; = 0 for all i < n}. Clearly, u(Fn_1 \ F,) = u(F,). Since «
has dense range in G, we apply the standard exhaustion argument to construct a
Borel isomorphism t,, : F,,_1 \ F,, — F,, such that (z,t,2) € R and a(z,t,2) € W,.
Define a Borel map T, : X — F}, by setting

z, for x € F,,
Thx = .
tnTn_1Th_o...Ty, otherwise.

Now we put S,, = {(z,y) | Thx = T,y}. Since the S,-class of a.e. z € X is finite,
Sy is of type I. Moreover, F;, is an S,-fundamental domain. Clearly, &1 C -+ C
S, CR.

Now we put § = |J,—; S,. Then S is an ergodic subrelation of R. Actually, if
a Borel function f : X — R is S,-invariant, then it does not depend on the first
n-coordinates of x. Since n is arbitrary, f is equal a.e. to a constant, as desired.

We claim that « [ S is a coboundary. Notice that a(z,y) = a(z, Tnx)a(y, Thy)~
for a.e. (z,y) € S, and

1

fotr = oz, Tir) = oz, Tnik—12)a(Tos k12, tns k Tnrk—12)
€ ax, Tntk—12)Whir C -+ C oz, Tnx)Wyai1Whio .. . Wik C fo(x)W,

for a.e. x € X. Hence f,, converges a.e. to a map ¢ : X — G. By Lemma 1.5
a(z,y) = ¢(x)p(y)~! for a.e. (x,y) € S. This implies that the cocycle B(z,y) :=
o(x)La(z,y)o(y), (x,y) € R, satisfies the conclusion of the proposition. |

We conclude this section with an extension of the remarkable Uniqueness Theo-
rem for Cocycles (due to V. Ya. Golodets and S. D. Sinelshchikov) to cocycles with
dense ranges in Polish groups.

Theorem 1.9. Let a, (3 : R — G be two cocycles with dense ranges in G. If R is
hyperfinite then o and B are weakly conjugate.

Proof. This is almost the same as that of [GS, Lemma 1.12], where G was as-
sumed to be locally compact, but one should use Proposition 1.6 instead of [GS,
Proposition 1.2]. O

2. QUASINORMAL SUBRELATIONS

We begin this section with a brief exposition of the basic notions of measurable
index theory [FSZ)].

Let R be an ergodic u-preserving equivalence relation on (X,9%,u) and S an
ergodic subrelation of R. Then there exist N € N U {oco} and Borel functions
¢j + X — X so that {S[¢;(z)] | 0 < j < N} is a partition of R[z], where R[z]
(resp. S[z]) stands for the R~ (resp. S-) class of z. N is called the index of S in R
and {¢,}; are called choice functions for the pair S C R. We may assume without
loss of generality that ¢; € Aut(X, u), j € J, and ¢g(x) = « for all x € X. Denote

by X(J) the full permutation group of the set J def {0,1,...,N — 1} for N < o0 or

J {0,1,2,...} for N = co. We define the index cocycle o : R — X(J) by setting

o(z,y)(@) = j if S[¢i(y)] = S[¢;(z)]. Notice that although choice functions are
nonunique, the cohomological class of ¢ is independent of their particular choice
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and is an invariant of S C R. Moreover, any cocycle cohomologous to an index
cocycle arises from a suitable selection of choice functions.

Two subrelations S1,Ss of R are said to be R-conjugate if there is a transfor-
mation T' € N[R] such that (T'x T)S; = Sz. In view of [FSZ, Theorem 1.6] S; is
isomorphic to Sy if and only if their indices are equal and their index cocycles are
weakly equivalent.

Let o stand for the index cocycle of S C R. Then § is said to be normal in R
if the restriction o [ S of ¢ to S is a coboundary. Equivalently, there are choice
functions {¢;},cs with ¢; € N[S], j € J. If, in addition, R is hyperfinite, then by
[FSZ, §2] there is a countable amenable group @ C N[S] with @ N [S] = 1¢ and
such that R is generated by S and Q.

Definition 2.1. § is called quasinormal if o is regular.

From now on R is an ergodic hyperfinite equivalence relation on (X, 9B, ).

Proof of Theorem 0.1. By Proposition 1.8 there exists an index cocycle o : R —
¥ (J) such that the subrelation P := {(z,y) € R | o(z,y) = Id} is ergodic. Replac-
ing, if necessary, S by a R-conjugated subrelation we may assume that o is deter-
mined by a family of choice functions {¢;};cs with the properties: o(z, ¢;(z))(0) =
jforallz € X, j e Jand S = {(x,y) € R | o(z,y)(0) = 0} (see [FSZ, Theo-
rem 1.6]). Clearly, P C S and ¢; € N[P], j € J. Let {¢;};cr be choice functions
for the pair P C §. We claim that ¢; € N[P]. Actually, given (z,y) € P, we have

(Vi(2), ¥i(y)) € P = o(¥i(x), ¢i(y))(j) = j for all j € J.

Since o (i (x),¥i(y)) = o(¥i(x), ¢j0vi(x))o(d;0vi(x), d;01i(y))o(d;0vi(y), ¥i(y))
and o(¢;o1i(x), ¢;0¢i(y))(0) = 0, we deduce that o(¢;(x),1;(y)) =0 for all j € J
and hence ¢; € N[P], as claimed. Notice that {1; 0 ¢; }icr,jcs are choice functions
for P C R. As in [FSZ], we define a multiplication law on I x J by setting

(i1, 1) * (i2, J2) = (i3,43) <= (Yi, © Bj, © i, © B, (T),%i5 © @y (x)) € P ace.

Then (I x J, *) is a countable amenable group, say Q, and (I x {0}, *) is a subgroup
of Q, say F' [FSZ]. Moreover, the map v : Q 3 g = (4,7) — ;0 ¢; € N[P] is an
outer near homomorphism, i.e. (a) v(q) € [P] if and only if ¢ = 1g, (b) v(q1 *¢2) €
v(q1)v(g2)[P]. Since @ is amenable, there exists a map w : Q — [P] such that the
map @ > g — v(q)w(q) € N[P] is an outer homomorphism [FSZ]. Thus @ can be
viewed as a subgroup of N[P]. Clearly, {¢;w((0,7))} e are choice functions for S C
R (they determine the very same index cocycle o) and {¢;w((¢,0))}iecr are choice
functions for P C S. Hence the following properties are satisfied: (a) @ N [P] = Id,
(b) R is generated by P and @, (c) S is generated by P and F. For (i, j) € Q and
a.e. (x,y) € P we have

oz, i 0 ¢j()(J1) = j2 = (5, 0 vio¢;(x), 05, (y)) €S

< Jiy € I with (¢, 0 ¢y, 09i 0 (), 85, (y)) € <= (i1,1) * (i,5) = (0, ]2)-
It is clear that the map 7 : Q@ 2 (4,j) — j € J = F\G is the F-quotient map
taking F' to {0}. Hence p((i,7))(j1) = 7((i1, 1) * (i, 7)) = 7((0, j2)) = j2. To put
it another way, o(x,qy)(j1) = p(q)(j1) for a.e. (x,y) € P, q € Q, j1 € F\G, i.e.
o = pof, as desired. To complete the proof, we observe that the kernel of p is
trivial, since X(J) acts freely on J. This implies that F' C @ is irreducible. O
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Remark 2.2. We observe that o takes values in p(Q) and p(Q) € (0). In a similar
o

way, the restriction of o to S takes values in p(F') and p(F) € (o | S).

The proof of Theorem 0.3 is divided into several lemmas.

Lemma 2.3. Let 81,82 be two ergodic quasinormal subrelations of R. They are
R-conjugate if and only if their indices are equal and (o1) = {(o2), where o1 and o9
denote the index cocycles of S1 and Sy respectively.

Proof. The proof follows from Theorem 1.9 and [FSZ, Theorem 1.6]. |

Lemma 2.4. Let F} C Q1 and Fo C Q2 be two irreducible pairs of countable
amenable groups corresponding to a quasinormal subrelation S of R as in Theo-
rem 0.1. Then they are weakly isomorphic.

Proof. Without loss of generality we may assume that (; is a transitive subgroup
of X(J), F; = {q € Q; | ¢(0) = 0}, the index cocycle o; takes values in Q; C X(J)
and has dense range in @, and the restriction o; [ S; takes values in F; and has
dense range in Fj, i = 1,2. Since o & 09, there is a Borel function ¢ : X — 3(J)
with o1(2,y) = ¢(z) " toa(x,y)é(y) for a.e. (z,y) € R. Let 7 € B(J) be a proper
value of ¢. By Proposition 1.1 Q; = 77 'Qa7, F1 = 7~ 'Fo7 and hence the pairs
Fy C Q1 and Fy C Q2 are weakly isomorphic. O

Lemma 2.5. Let F' C Q correspond to S as in Theorem 0.1 and T be any auto-
morphism from N[R]. Then F C Q corresponds also to the R-subrelation (T'xT)S.

Lemma 2.6. For each irreducible pair of countable amenable groups F C Q there
exists a quasinormal ergodic subrelation S C R such that F' C Q) corresponds to S.

Proof. Tt is well known that @ can be embedded into N[R] in such a way that
Q N [R] = Id. Denote by R’ (resp. S’) the equivalence relation generated by R
and @ (resp. by P and F). Since R’ is hyperfinite, there is a transformation
T € Aut(X, p) with (T x T)R' = R. Clearly, the subrelation S := (T' x T')S’ is as
desired. |

Proof of Theorem 0.3. In view of Theorem 0.1 and Lemmas 2.4-2.6 the map {R-
conjugacy class of S} — {the weak isomorphism class of F' C ) as in Theorem 0.1}
is well defined and onto. It remains to verify the injectivity. Let S; and Se be
two quasinormal subrelations of R such that the corresponding pairs F} C @)1 and
F5 C Q2 are weakly isomorphic. Since Card(F1\Q1) = Card(F>\Q2), the R-indices
of &1 and Ss are equal. Let 01,02 : R — X(J) stand for the index cocycles of S;
and Sy respectively. It is clear that Q1 and Qs viewed as closed subgroups of £(.J)
are conjugate. Since Q1 € (01) and Q2 € (02), it follows from Lemma 2.3 that S;
and S are R-conjugate. O

Recall that S is normal if o [ S is a coboundary. Hence it is natural to state
Proposition 2.7. S is quasinormal if and only if o [ S is reqular.

Proof. (=) Without loss of generality we may assume that o takes values and
has dense range in a closed transitive subgroup G C X(J) and S = {(z,y) € R |
o(z,y)(0) = 0}. Since H := {7 € G | 7(0) = 0} is an open subgroup of G and
S = o~1(H), it follows that o | S has dense range in H.

(«<=) Let o | S take values and have dense range in a closed subgroup H C X(J).
By Proposition 1.8 we may assume that P := {(z,y) € S | o(x,y) = Id} is an
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ergodic subrelation. It remains to repeat the argument of Theorem 0.1 almost
literally to deduce that S C R has the structure described in Theorem 0.1. O

3. GENERIC PROPERTIES OF SUBRELATIONS

Denote by Z! the set of R-cocycles with values in X(J). Let A be a ug-equivalent
probability measure on R. It is well known that Z' endowed with the topology of
convergence in A is a Polish space [FM]. This topology is unaffected if we replace
A with an equivalent probability measure. Let § stand for Haar (o-finite) measure
on J. The group Aut(X x J,u x §) of u x d-preserving automorphisms of X x J
is Polish when endowed with the weak topology. Recall that R,, — R weakly in
Aut(X x J pu x 0) if (u x §)(Ry,AARA) + (u x 0)(R;PAARTTA) — 0 as n — oo
for each Borel subset A C X x J with (u x §)(A) < oo. By [CK] the ergodics,
say &, form a dense G5 in Aut(X x J,pu x §). Since R is hyperfinite, there exists
an ergodic transformation 7' € Aut(X, p) such that R is the T-orbital equivalence
relation. Consider the map ® : Z' 3 a — T, € Aut(X x J,u x J), where T, is
given by Ty (z,7) = (Tx,a(x)(j)). It is routine to verify that ® is continuous. Let
Z} , stand for the set of index cocycles, i.e.

Z! = {a € Z | a is the index cocycle of some ergodic subrelation S C R}.

Clearly, Z} , # 0. Since by [FSZ, Proposition 1.5 and Theorem 1.6(a)] Z., =
P=1(€), it follows that Z} ; is a G5 in Z! and hence a Polish space when endowed
with the induced topology. We set

Z} . i={a € Z' | ais quasinormal and (a) = {2(J)}}.

max

Let @ be the group of finite permutations of J, F := {7 € Q | 7(0) = 0}, and S
the quasinormal subrelation of R corresponding to F' C @ by Theorem 0.3. Since
Q is dense in X(J), the index cocycle of S belongs to Z. .. and hence Z} . # 0.
Only a slight modification of the routine argument from [PS] or [CHP, Theorem 3]

is needed to prove that Z. . is a dense G5 in Z'. Since Z},. C Z! ,, we obtain

Proposition 3.1. 7!

max 5 a dense Gs in Z 4.

In view of this statement it is of interest to give an example of a nonquasinormal
ergodic subrelation.

Example 3.2. Let (X, ) = ({0,1}, \)9, where ) is the equidistribution on {0, 1}.
Let H := Q x Z with multiplication as follows:

(g,n)(p,m) = (¢ + 2"p,n + m).

We define an action of H on X by setting (hx), = ¥o-n(,—q) for all p € Q, where
h = (¢,n) and & = (zp)peg. Clearly, (X, ) is an ergodic H-space. Hence the
Cartesian square (Z,v) = (X,p) x (X, u) is an ergodic H2-space. Denote by R
the H?2-orbit equivalence relation. Since H is amenable, R is hyperfinite. Consider
the homomorphism 7 : H? — X(H) given by 7(hy, ho)(h) = hihhy . Tt is easy
to verify that the kernel of 7 is isomorphic to the center of H. Since the center is
trivial, 7 is one-to-one. We put

W:={r€X(H)|7(lg) = 1u, 7(h') =1, and 7(h") = 1"},
where b/ = (1,0) and A” = (0,1). Clearly, W is an open neighborhood of the

identity in X(H). It is routine to verify that w(s)IW N'W = () for every nontrivial
s € H?. Now we define a cocycle o : R — X(H) by setting o(z,s2) = n(s)" 1,z € Z



3370 ALEXANDRE I. DANILENKO

and s € H2. Let S := {(z,y) € R | 0(2,y)(1g) = 1x}. Notice that S is ergodic,
since it contains an ergodic subrelation generated by the diagonal (Bernoulli) Q-
action on Z = X x X. For each h € H, we define a map ¢, : Z — Z by setting
én(z) = sz, where s = (1g,h) € H?. Then o(z,¢n(2))(0) = h, i.e. {¢n}tnhen are
choice functions for § C R and o is the corresponding cocycle. We claim that
S is not quasinormal in R. Suppose the contrary: there exists a closed subgroup
G C ¥(H) and a Borel map ¢ : Z — X(H) such that the cocycle 5: R > (z,y) —
#(2)"to(z,y)¢9(y) € X(H) takes values and has dense range in G. Choose an open
set U C ¥(H) and a neighborhood O C X(H) of Idy such that UOU~* ¢ W
and v(¢~1(U)) > 0. By assumption, there are a subset A C Z and a nontrivial
s € H? with v(A) > 0, ANsA C ¢~}(U), and B(sz,2) € O for all z € A. Then
W # (s) = o(sz,2) € UOU C W for all 2z € A, a contradiction.
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