ON A CONJECTURE OF F. MÓRICZ

G. BROWN AND K. Y. WANG

(Communicated by J. Marshall Ash)

Abstract. F. Móricz has investigated the integrability of double lacunary sine series. His result, valid for special lacunary sequences, does not extend in the form originally conjectured, but we establish a suitably modified result.

1. Introduction

Let \(a_{ij}, i, j \in \mathbb{N} \), be real numbers satisfying the condition

\[
\sigma = \left(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}^2 \right)^{\frac{1}{2}} < \infty.
\]

Suppose \(q > 1 \) and \(m_i, n_j \) are positive numbers satisfying

\[
\frac{m_{i+1}}{m_i} \geq q, \quad \frac{n_{j+1}}{n_j} \geq q, \quad m_1 = n_1 = 1, \quad i, j \in \mathbb{N}.
\]

Define

\[
f(x, y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} \sin m_i x \sin n_j y,
\]

\[
g_j(x) = \sum_{i=1}^{\infty} a_{ij} \sin m_i x, \quad h_j(y) = \sum_{j=1}^{\infty} a_{ij} \sin n_j y.
\]

In the general case these limits are to be understood in the sense of \(L^2 \)-convergence and, as Lemma 1 shows, there is no inherent ambiguity in the definition.

F. Móricz [3] considered the special case when \(m_i = n_i = 2^{i-1}, i \in \mathbb{N} \). In this case he proved that the condition

\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left(\sum_{k=i}^{\infty} \sum_{l=j}^{\infty} a_{kl}^2 \right)^{\frac{1}{2}} < \infty
\]

is equivalent to

\[
\frac{f(x, y)}{xy} \in L(0, 1)^2, \quad \frac{g_i(x)}{x} \in L(0, 1), \quad \frac{h_i(y)}{y} \in L(0, 1), \quad i \in \mathbb{N}.
\]

Received by the editors June 22, 1993 and, in revised form, February 12, 1997.
1991 Mathematics Subject Classification. Primary 42B05.
Key words and phrases. Double sine series, lacunarity, integrability.
This work was supported by a grant from the Australian Research Council.

\(\copyright 1998 \) American Mathematical Society
He proposed that in the general case when \(m_i, n_j \) are positive integers satisfying condition (2) and the integrability condition, then (4) is satisfied if and only if

\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \log \frac{m_{i+1}}{m_i} \log \frac{n_{j+1}}{n_j} \left(\sum_{k=i}^{\infty} \sum_{l=j}^{\infty} a_{kl}^2 \right)^{\frac{1}{2}} < \infty.
\]

Our result is the following

Theorem. Let \(a_{ij}, m_i, n_j \) satisfy (1) and (2). Let \(f, g, h \) be as above. Define

\[
S = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|, \quad T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \log \frac{m_{i+1}}{m_i} \left(\sum_{k=i+1}^{\infty} a_{kj}^2 \right)^{\frac{1}{2}},
\]

\[
U = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \log \frac{n_{j+1}}{n_j} \left(\sum_{l=j+1}^{\infty} a_{il}^2 \right)^{\frac{1}{2}},
\]

\[
V = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \log \frac{m_{i+1}}{m_i} \log \frac{n_{j+1}}{n_j} \left(\sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{kl}^2 \right)^{\frac{1}{2}}.
\]

Then the condition (4) is equivalent to the condition

\[
S + T + U + V < \infty.
\]

We point out that in our theorem, \(m_i, m_j \) need not be integers. If \(m_i = n_i = 2^{i-1} \), then (5) is equivalent to (6). But in general, as the following example shows, (5) is stronger than (6) and they are not equivalent.

First we note that the one-dimensional case is subsumed by the two-dimensional case. If we set \(a_{ij} = b_i \) for \(j = 1 \) and \(a_{ij} = 0 \) for \(j > 1 \), then (5) reads

\[
\sum_{i=1}^{\infty} \log \frac{m_{i+1}}{m_i} \left(\sum_{j=i}^{\infty} b_j^2 \right)^{\frac{1}{2}} < \infty.
\]

and (6) reads

\[
\sum_{i=1}^{\infty} |b_i| + \sum_{i=1}^{\infty} \log \frac{m_{i+1}}{m_i} \left(\sum_{j=i+1}^{\infty} b_j^2 \right)^{\frac{1}{2}} < \infty.
\]

Let \(b_i = \{e^{-2i+1} - e^{-2i+2}\}^{1/2} \) and \(m_i = \prod_{i=1}^{d} e^{2d-1} \). Then we see that (6') holds but (5') does not.

We present the proof of the Theorem in two parts:

Theorem 1. Let \(d = 1 + \frac{4}{(q-1)^2} + \frac{2}{(q-1)^2} \sqrt{\frac{4}{(q-1)^2} + 8} \). Then

\[
\int_0^d |g_j(x)| \frac{dx}{x} \leq c_q \left\{ \sum_{i=1}^{\infty} |a_{ij}| + \sum_{i=1}^{\infty} \log \frac{m_{i+1}}{m_i} \left(\sum_{k=i+1}^{\infty} a_{kij}^2 \right)^{\frac{1}{2}} \right\},
\]
the equation:

\[1 \]

\[I \]

\[d \]

\[n \]

\[q \]

\[S \]

\[T \]

\[U \]

\[V \]

\[d = d(q) \]

\[d(q) \]

\[\int_0^d |h_1(y)| \frac{dy}{y} \leq c_q \left\{ \sum_{j=1}^{\infty} |a_{ij}| + \sum_{j=1}^{\infty} \log \frac{n_{j+1}}{n_j} \left(\sum_{i=j+1}^{\infty} a_{ij}^2 \right)^{\frac{1}{2}} \right\}, \]

\[\int_0^d \int_0^d |f(x, y)| \frac{dx dy}{xy} \leq c_q (S + T + U + V). \]

This theorem demonstrates that (6) implies (4).

Theorem 2. (4) implies (6).

We point out that the number \(d = d(q) \) in Theorem 1 is just the positive root of the equation: \(\frac{1}{4}(d-1)^2 - \frac{2}{(q-1)^2} (d+1) - \frac{4}{(q-1)^2} = 0 \). This particular definition of \(d \) will be retained throughout the paper.

2. Proof of Theorem 1

Lemma 1. Let \(a, b \) be arbitrary real numbers and \(Q = (a, a+\alpha) \times (b, b+\alpha) \). Then

\[0.001\alpha \leq \left\{ \frac{1}{\sigma^2} \int_Q f^2(x, y) dx dy \right\}^{\frac{1}{2}} \leq \sigma. \]

Proof. Let \(I_{ijkl} = \int_Q \sin m_i x \sin m_k x \sin n_j y \sin n_l y \ dx dy \). We have \(\int_Q f^2(x, y) \ dx dy = \sum a_{ijkl} I_{ijkl} \), where the sum \(\sum \) is taken over \(N^4 \). If \(i \neq k \) and \(j \neq l \), then

\[|I_{ijkl}| \leq \left(\frac{1}{|m_i - m_k|} + \frac{1}{m_i + m_k} \right) \left(\frac{1}{|n_j - n_l|} + \frac{1}{n_j + n_l} \right). \]

Let \(S_i \) denote the subset of \(N^4 \) defined by \(S_i = \{(i, j, k, l) \in N^4 : i \neq k, j \neq l \} \) and let \(\sum_1 \) denote the sum taken over \(S_i \). By Schwarz’s inequality \(|\sum_1 a_{ijkl} I_{ijkl}| \leq \left\{ \sum_1 |a_{ijkl}|^2 \right\}^{\frac{1}{2}} \left\{ \sum_1 I_{ijkl}^2 \right\}^{\frac{1}{2}} \). Applying condition (2) we find \(\sum_1 I_{ijkl}^2 \leq 16(\frac{1}{q-1})^2 \left(\frac{1}{q-1} \right)^2 \) and hence

\[|\sum_1 a_{ijkl} I_{ijkl}| \leq \left\{ \frac{4}{(q-1)^2} - a_q \right\} \sigma^2, \]

where \(a_q = \frac{4}{(q-1)^2} \).

If \(i = k \) and \(j \neq l \), then \(|I_{ijkl}| \leq \frac{d+1}{2} \left(\frac{1}{|n_j - n_l|} + \frac{1}{n_j + n_l} \right) \). Applying condition (2) again we find \(\sum_2 |a_{ijkl} I_{ijkl}| \leq \left\{ (\frac{2(d+1)}{q-1} - b_q) \right\} \sigma^2 \), where \(\sum_2 \) denotes the sum over the set \(\{i \neq k, j = l\} \cup \{i = k, j \neq l\} \) and \(b_q = \frac{2(d+1)}{(q-1)^2(q+1)}. \)

Finally, if \((i, j) = (k, l) \), then by condition (2) we have

\[\frac{1}{4} \left(d - \max \left(\frac{|\sin d|}{q} \right) \right)^2 \leq I_{ijkl} \leq \frac{1}{4} (d+1)^2, \]

\[\frac{1}{4} (d-1)^2 \sigma^2 \leq \sum_1 \sum_1 \sigma_{ij}^2 I_{ijij} \leq \frac{1}{4} (d+1)^2 \sigma^2. \]

Combining the estimates for \(\sum_1, \sum_2 \) and (10), noticing \(\frac{1}{4} (d-1)^2 - \frac{2(d+1)}{(q-1)^2} - \frac{4}{(q-1)^2} = 0 \) we get \(\sqrt{a_q + b_q} \sigma \leq \{ \int_Q f^2(x, y) \ dx dy \}^{\frac{1}{2}} \leq d \sigma \). If \(1 < q \leq 31 \), then \(\sqrt{a_q + b_q} \geq \frac{d}{850} \) and hence \(\frac{1}{\sqrt{850}} \int_Q f^2(x, y) \ dx dy \geq \frac{\sigma}{\sqrt{850}} \). If \(q \geq 31 \), then \(d < 1.2 \) and hence \(I_{ijij} \geq \frac{1}{4} (d - \sin 1.2)^2 \). So we modify (10) to get

\[\int_Q f^2(x, y) \ dx dy \geq \{ a_q + b_q + 0.034 \} \sigma^2 \]
and hence for \(q > 31 \) we have \(\left\{ \frac{1}{\sqrt{q}} \int_Q f^2(x, y) \, dx \, dy \right\}^{\frac{1}{2}} > 0.028 \sigma \). The combination of these estimates completes the proof.

The following lemma is a direct corollary of Lemma 1.

Lemma 2. Let \(a_j \) be real numbers satisfying \(A = (\sum_{j=1}^{\infty} a_j^2)^{1/2} < \infty \) and let \(m_j \) be numbers satisfying the condition:

\[m_1 = 1, \quad \frac{m_{i+1}}{m_i} \geq q > 1. \]

Define \(\psi(x) = \sum_{j=1}^{\infty} a_j \sin m_j x \). Then for any \(a \in \mathbb{R} \)

\[
\frac{1}{200} A \leq \left\{ \frac{1}{d} \int_a^{a+d} \psi^2(x) \, dx \right\}^{\frac{1}{2}} \leq 2A.
\]

Proof of Theorem 1. We first prove (7). For fixed \(j \in \mathbb{N} \), we omit the subscript \(j \), and write \(g = g_j \), \(a_i = a_{ij} \) for simplicity. Then we have

\[
\int_0^d x^{-1} |g(x)| \, dx \leq \sum_{i=1}^{\infty} \int_{\frac{d}{m_i}}^{\frac{d}{m_{i+1}}} x^{-1} \left(|S_i(x)| + |T_i(x)| \right) \, dx
\]

where \(S_i(x) = \sum_{k=1}^i a_k \sin m_k x \), \(T_i(x) = \sum_{k=i+1}^{\infty} a_k \sin m_k x \). Since \(|\sin m_k x| \leq m_k x \) we see \(\int_{\frac{d}{m_{i+1}}}^{\frac{d}{m_i}} |S_i(x)| \, dx \leq d \sum_{k=1}^{i} |a_k| \frac{1}{m_i} \), and

\[
\sum_{i=1}^{\infty} \int_{\frac{d}{m_{i+1}}}^{\frac{d}{m_i}} x^{-1} |S_i(x)| \, dx \leq c_q \sum_{i=1}^{\infty} |a_{ij}|.
\]

Simultaneously, writing \(c_k = a_{i+k,j} \), \(u_k = \frac{m_{i+k}}{m_i} \) we get

\[
\int_{\frac{d}{m_{i+1}}}^{\frac{d}{m_i}} |T_i(x)| \, dx = \int_{\frac{d}{m_i}}^{\frac{d}{m_{i+1}}} \left| \sum_{k=1}^{i} c_k \sin u_k x \right| \, dx.
\]

Let \(m = \left\lfloor \frac{m_{i+1}}{m_i} \right\rfloor \) and \(\psi(x) = \sum_{k=1}^{\infty} c_k \sin u_k x \). Then

\[
\int_{\frac{d}{m_i}}^{\frac{d}{m_{i+1}}} |\psi(x)| \, dx \leq \sum_{k=1}^{m} \int_{\frac{d}{m_{i+1}}}^{(\mu+1)d} |\psi(x)| \, dx.
\]

By Lemma 2 we have \(\int_{\mu d}^{(\mu+1)d} |\psi(x)| \, dx \leq 2 \mu (\sum_{k=i+1}^{\infty} a_k^2)^{1/2} \) and hence

\[
\int_{\frac{d}{m_{i+1}}}^{\frac{d}{m_i}} |T_i(x)| \, dx \leq c_q \log \frac{m_{i+1}}{m_i} \left(\sum_{k=i+1}^{\infty} a_k^2 \right)^{1/2},
\]

\[
\sum_{i=1}^{\infty} \int_{\frac{d}{m_{i+1}}}^{\frac{d}{m_i}} x^{-1} |T_i(x)| \, dx \leq c_q \sum_{i=1}^{\infty} \log \frac{m_{i+1}}{m_i} \left(\sum_{k=i+1}^{\infty} a_k^2 \right)^{1/2}.
\]

Combining (12), (13) and (15) we get (7). By symmetry (8) follows.
Now we write $I_{ij} = \int_{m_{i+1}}^{m_i} \int_{n_{j+1}}^{n_j} |f(x, y)| \frac{dxdy}{xy}$ and define
\[
\phi_{kl}(x, y) = a_{kl} \sin m_k x \sin n_l y,
\]
\[
f_1(x, y) = \sum_{k=1}^{i} \sum_{l=1}^{j} \phi_{kl}(x, y), \quad f_2(x, y) = \sum_{k=i+1}^{\infty} \sum_{l=1}^{j} \phi_{kl}(x, y),
\]
\[
f_3(x, y) = \sum_{k=1}^{i} \sum_{l=1}^{\infty} \phi_{kl}(x, y), \quad f_4(x, y) = \sum_{k=i+1}^{\infty} \sum_{l=1}^{\infty} \phi_{kl}(x, y).
\]

Then define
\[
I_{ij}^{(v)} = \int_{d/m_{i+1}}^{d/m_i} \int_{d/n_{j+1}}^{d/n_j} |f_{v}(x, y)| \frac{dxdy}{xy}, \quad v = 1, 2, 3, 4.
\]

We see $I_{ij}^{(1)} \leq d^2 \sum_{k=1}^{i} \sum_{l=1}^{j} |a_{kl}| \frac{1}{q^{2m_i/n}}$, and hence
\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} I_{ij}^{(1)} \leq c_q \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}| = c_q S.
\]

Secondly, $I_{ij}^{(2)} \leq \sum_{i=1}^{j} \frac{d}{q^{2m_i}} \int_{d/m_{i+1}}^{d/m_i} \left| \sum_{k=i+1}^{\infty} a_{kl} \sin m_k x \right| \frac{dx}{x}$. So by (14)
\[
\int_{m_{i+1}}^{m_i} \left| \sum_{k=i+1}^{\infty} a_{kl} \sin m_k x \right| \frac{dx}{x} \leq c_q \log \frac{m_{i+1}}{m_i} \left(\sum_{k=i+1}^{\infty} |a_{kl}|^2 \right)^{1/2}.
\]

Therefore
\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} I_{ij}^{(2)} \leq c_q T.
\]

Symmetrically we have
\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} I_{ij}^{(3)} \leq c_q U.
\]

Finally, to estimate $I_{ij}^{(4)}$ we change the integrating variables by writing $x = s/m_{i+1}$, $y = t/n_{j+1}$. Then we get
\[
I_{ij}^{(4)} = \int_{d}^{(m_{i+1}/m_i)d} \int_{d}^{(n_{j+1}/n_j)d} \left| \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} b_{kl} \sin u_k s \sin v_l t \right| \frac{dsdt}{st},
\]
\[
\text{where } b_{kl} = a_{i+k,j+l}, \quad u_k = \frac{m_{i+k}}{m_i}, \quad v_l = \frac{n_{j+l}}{n_j}.
\]

Let $m = \lfloor m_{i+1}/m_i \rfloor$ and $n = \lfloor n_{j+1}/n_j \rfloor$. Define
\[
\theta_{\mu\nu} = \int_{\mu d}^{(1+\mu)d} \int_{\nu d}^{(1+\nu)d} \left| \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} b_{kl} \sin u_k s \sin v_l t \right| \frac{dsdt}{st}.
\]

Applying Lemma 1 we get $\theta_{\mu\nu} \leq \frac{1}{\mu \nu} (\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} b_{kl}^2)^{1/2}$, and hence
\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} I_{ij}^{(4)} \leq c_q V.
\]

A combination of (16)–(19) yields (9). The proof is complete. \[\square\]
3. PROOF OF THEOREM 2

To prove Theorem 2 we need more integral estimates.

Lemma 3. Let \(m_i, c_{ij}, i, j \in \mathbb{N} \), be real numbers satisfying condition (11) and \(B = (\sum_{i=1}^{\infty} c_{ii})^2 + \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij}^2 < \infty \). Define

\[
h(x) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij} \cos(m_i - m_j)x.
\]

Then, for any \(a \in \mathbb{R} \), \(\int_a^{a+d} h^2(x) \, dx \leq c_q B \), where, and throughout this paper, \(c_q \) denotes a constant depending only on \(q \).

Proof. Define

\[
h_1(x) = \sum_{i=1}^{\infty} \sum_{j=1}^{i-1} c_{ij} \cos(m_i - m_j)x, \quad h_2(x) = \sum_{j=1}^{\infty} \sum_{i=1}^{j-1} c_{ij} \cos(m_i - m_j)x.
\]

We see \(h^2(x) \leq 3 \{ h_1^2(x) + h_2^2(x) + (\sum_{i=1}^{\infty} c_{ii})^2 \} \). We have \(h_1^2(x) = \frac{1}{2} \{ g_1(x) + g_2(x) \} \) where

\[
g_1(x) = \sum_{i>j} \sum_{k>l} c_{ij} c_{kl} \cos(m_i - m_j - m_k + m_l)x, \quad g_2(x) = \sum_{i>j} \sum_{k>l} c_{ij} c_{kl} \cos(m_i - m_j + m_k - m_l)x.
\]

By condition (11) for \(i > j, k > l \), we have \(m_i - m_j + m_k - m_l \geq 2(q - 1) \cdot \sqrt{m_i - 1 \cdot m_k - 1} \). Hence by Schwarz’s inequality we get

\[
\int_a^{a+d} g_2(x) \, dx \leq c_q \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij}^2.
\]

Choose \(n \in \mathbb{N} \) such that \(1 - \frac{1}{q} - \frac{1}{q^n} = \delta > 0 \). Then define subsets \(J_\mu \) of \((i, j, k, l) \in \mathbb{N}^4 \) by

\[
J_1 = \{ i > j, i \geq k + n, k > l \}, \quad J_2 = \{ i > j, i \leq k - n, k > l \},
\]

\[
J_3 = \{ k + n > i > k > l, i \geq j + n \}, \quad J_4 = \{ k + n > i > k > l, i > j > i - n \},
\]

\[
J_5 = \{ i + n > k > i > j, k > l \}, \quad J_6 = \{ i = k > j, k > l \}
\]

and define \(g_{1\nu}(x) = \sum_{\nu} c_{ij} c_{kl} \cos(m_i - m_j - m_k + m_l)x, \ \nu = 1, \ldots, 6 \), where the sum \(\sum_{\nu} \) denotes \(\sum_{(i,j,k,l) \in J_\nu} \). Then we see \(g_1 = \sum_{\nu=1}^{6} g_{1\nu} \). First we have \(\int_a^{a+d} g_{11}(x) \, dx \leq c_q \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij}^2 \). So by Schwarz’s inequality

\[
\int_a^{a+d} g_{11}(x) \, dx \leq c_q \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij}^2.
\]

Symmetrically

\[
\int_a^{a+d} g_{12}(x) \, dx \leq c_q \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij}^2.
\]
If \((i, j, k, l) \in J_3\), then \(m_i - m_j - m_k + m_l \geq \delta m_i\). Hence we have
\[
\int_{a}^{a+d} g_{13}(x) \, dx \leq \frac{2}{d} \sum_{k=2}^{\infty} \sum_{l=1}^{k-1} |c_{kl}| \sum_{i=\max(n+1, k+1)}^{\infty} \sum_{j=1}^{i-n} \frac{|c_{ij}|}{m_i}.
\]

The using Schwarz’s inequality we get
\[
\int_{a}^{a+d} g_{13}(x) \, dx \leq c_q B. \tag{23}
\]

For \((i, j, k, l) \in J_4\) let \(\varepsilon_{ijkl} = |f_{a}^{\infty} \cos(m_i - m_j - m_k + m_l) x \, dx|\). Then
\[
\int_{a}^{a+d} g_{14}(x) \, dx \leq \sum_{k=2}^{\infty} \sum_{l=1}^{k-1} \sum_{i=\max(1, k+1)}^{\infty} \sum_{j=1}^{i-n} |c_{ij}| c_{kl} |\varepsilon_{ijkl}|.
\]

If we define \(\varepsilon_{ijkl} = c_{ij} = 0\) when \(i \leq 0\) or \(j \leq 0\), then we get
\[
\int_{a}^{a+d} g_{14}(x) \, dx \leq \sum_{k=2}^{n} \sum_{l=0}^{k-1} \sum_{t=0}^{\infty} |c_{k+l} k+s-t+1 + i| \sum_{t=1}^{k-l} \sum_{l=1}^{c_{k+l} |\eta_t|},
\]

where \(\eta_t(k, s, t) = \varepsilon_{k+s-t+1, k+l} \) will be written as \(\eta_t\) for simplicity. Write \(\sigma_k = \sum_{l=1}^{c} |c_{kl}| \eta_t\). Then \(\sigma_k \leq \left(\sum_{l=1}^{c} c_{kl}^2 \eta_t^2 / n\right)^{1/2}\). Define
\[
l_0 = \min \left\{ l \in \{1, \ldots, k-1\} : |m_{k+s} - m_{k+s-n+1} - m_k + m_l| < \frac{1}{2} \left(1 - \frac{1}{q} \right) m_l \right\},
\]

\(l_0 = 0\) for the case that the minimum does not exist. As a convention we let \(m_0 = 0\). Then for all \(l \neq l_0\), \(|m_{k+s} - m_{k+s-n+1} - m_k + m_l| \geq \frac{1}{2} (1 - \frac{1}{q}) m_l\). Hence we have \(n_l \leq c_q \frac{1}{m_l}\), for \(l \neq l_0\), \(1 \leq l \leq k-1\), and \(\eta_t \leq n\). Consequently we get \(\sum_{l=1}^{c} \eta_t^2 \sum_{l=1}^{k-l} c_{kl}^2 \eta_t^2 \leq \sum_{l=1}^{c} \eta_t^2 \sum_{l=1}^{k-l} c_{kl}^2 \eta_t^2 \sum_{l=1}^{k-l} c_{kl}^2 \eta_t^2 \sum_{l=1}^{k-l} c_{kl}^2 \eta_t^2 \). Now we derive
\[
\int_{a}^{a+d} g_{14}(x) \, dx \leq c_q B. \tag{24}
\]

Since \(J_5\) is symmetrically related to \(J_3 \cup J_4\) we conclude
\[
\int_{a}^{a+d} g_{15}(x) \, dx \leq c_q B. \tag{25}
\]

By a direct calculation we get
\[
\int_{a}^{a+d} g_{16}(x) \, dx \leq c_q B. \tag{26}
\]

A combination of (21)–(26) yields
\[
\int_{a}^{a+d} g_1(x) \, dx \leq c_q B. \tag{27}
\]

Then we combine (20) and (27) to get \(\int_{a}^{a+d} h_1^2(x) \, dx \leq c_q B\). Symmetrically we conclude \(\int_{a}^{a+d} h_2^2(x) \, dx \leq c_q B\). And at last we derive \(\int_{a}^{a+d} h_2(x) \, dx \leq c_q B\) as required. \(\square\)
Lemma 4. Under the assumptions of Lemma 3 define
\[g(x) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij} \cos(m_i + m_j)x. \]

Then \(\int_{a}^{a+d} g^2(x) \, dx \leq c_q B. \)

The proof is completely similar to that of Lemma 3. We omit it.

Lemma 5. Under the conditions of Lemma 1
\[\left\{ \int_Q f^4(x, y) \, dxdy \right\} \leq c_q \sigma. \]

Proof. For \(i \in \mathbb{N} \) and \(y \in \mathbb{R} \) fixed we define \(b_i = \sum_{j=1}^{\infty} a_{ij} \sin n_jy \). Then we see
\[f^4(x, y) = \frac{1}{2} \{ h(x) + g(x) \} \] where \(h, g \) are defined respectively as in Lemma 3 and Lemma 4 with coefficients \(c_{ij} = b_i b_j \). Then by these lemmas we conclude
\[\int_Q f^4(x, y) \, dxdy \leq c_q \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \int_{b}^{b+d} \{ b_i b_j \}^2 \, dy. \]

Since \(b_i b_j = \frac{1}{2} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{ij} a_{jl} \{ \cos(n_k - n_l)y - \cos(n_k + n_l)y \} \) we apply Lemmas 3 and 4 again to get
\[\int_{b}^{b+d} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}^2 \sum_{i=1}^{\infty} a_{jl}^2 \, dy \leq c_q \sum_{k=1}^{\infty} a_{ik}^2 \sum_{i=1}^{\infty} a_{il}^2. \]

Substituting this into (28) we complete the proof.

The following two estimates follow from Lemma 1 and Lemma 5.

Lemma 6. Under the conditions of Lemma 1 \(c_q \int_Q |f(x, y)| \, dxdy \geq \sigma. \)

Lemma 7. Under the assumptions of Lemma 2 \(c_q \int_{a}^{a+d} |\psi(x)| \, dx \geq A. \)

The following lemma is the essence of Móricz’s Lemmas 2 and 3 of [3].

Lemma 8. Let \(a_i \geq 0, i \in \mathbb{N} \). Then for any \(r \in \mathbb{N} \) and \(n > r \)
\[\sum_{i=r+1}^{n} a_i \leq \frac{1}{\sqrt{r}} \left(\sum_{i=1}^{n} a_i^2 \right)^{1/2}. \]

Proof of Theorem 2. By Lemma 1, (4) is equivalent to
\[(4') \quad \frac{f(x, y)}{xy} \in L(0, \lambda d)^2, \quad \frac{g_i(x)}{x} \in L(0, \lambda d), \quad \frac{h_i(y)}{y} \in L(0, \lambda d), \quad i \in \mathbb{N}, \]
where \(\lambda = \max(1, \frac{1}{q-1}) \geq 1 \) and \(d \) is the value defined in Theorem 1. Now assume (4') holds; we are going to prove (6).

Let \(A_{ij} = \log \frac{m_{i+1}}{m_i} \{ \sum_{k=j+1}^{\infty} u_{k j} \}^{1/2}, B_{ij} = \log \frac{m_{j+1}}{m_k} \{ \sum_{l=j+1}^{\infty} u_{ij} \}^{1/2}. \) We first prove \(\sum_{k=1}^{\infty} A_{kj} < \infty, \sum_{l=1}^{\infty} B_{il} < \infty \) \((i, j) \in \mathbb{N} \).

For \(n \) big enough and \(f \) fixed, let \(I_n = \int_{\lambda d/n}^{\lambda d/m_{n+1}} g_j(x) \, dx \). Then \(I_n \geq J_n - R_n \) where
\[R_n = \sum_{i=1}^{n} \int_{(\lambda d/m_{i+1})}^{(\lambda d/m_i)} \left| \sum_{k=1}^{i} a_{k j} \sin m_kx \right| \frac{dx}{x} \leq c_q \sum_{i=1}^{n} |a_{ij}|. \]
and

\[J_n = \sum_{i=1}^{n} \int_{\nu d/m_i}^{\infty} \left| \sum_{k=i+1}^{\infty} a_{kj} \sin m_k x \right| \frac{dx}{x}. \]

Applying Lemma 7 we get

\[J_n \geq \sum_{i=1}^{n} \sum_{\mu=1}^{m_i} \frac{1}{(\mu + \lambda)} c_q \left(\sum_{k=i+1}^{\infty} a_{kj}^2 \right)^{\frac{1}{2}}, \]

where \(m = \lfloor (\frac{m_{i+1}}{m_i} - 1) \lambda \rfloor \in \mathbb{N} \). It is now clear why we take \(\lambda d \) instead of \(d \). We obtain, in fact, \(J_n \geq c_q \sum_{i=1}^{n} A_{ij} \) and hence \(\sum_{i=1}^{n} A_{ij} \leq c_q' \sum_{i=1}^{n} |a_{ij}| + c_q'' I_n \). If \(\sum_{i=1}^{\infty} A_{ij} = \infty \), noticing \(\int_0^{\lambda d} |g_j(x)| \frac{dx}{x} < \infty \) we derive

\[1 \leq \lim_{n \to \infty} c_q' \left(\frac{n}{i=1} |a_{ij}| \left(\sum_{i=1}^{n} A_{ij} \right)^{-1} \right). \]

But by Lemma 8 we conclude the right part of this inequality should be zero. This contradiction shows \(\sum_{i=1}^{\infty} A_{ij} < \infty \). Symmetrically we know \(\sum_{j=1}^{\infty} B_{ij} < \infty \).

Next we define \(f_\nu, \nu = 1, 2, 3, 4, \) as in the proof of Theorem 1 and define

\[E_{ij}^{(\nu)} = \int_{\nu d/m_i+1}^{\lambda d/m_i} \int_{\nu d/n_j+1}^{\lambda d/n_j} |f_\nu(x, y)| \frac{dx dy}{xy}, \quad \nu = 1, 2, 3, 4, \; i, j \in \mathbb{N}. \]

For big \(s, t \in \mathbb{N} \) let

\[\sigma_{s,t}^{(\nu)} = \sum_{i=1}^{s} \sum_{j=1}^{t} E_{ij}^{(\nu)}, \quad \sigma_{s,t} = \sum_{i=1}^{s} \sum_{j=1}^{t} \int_{\nu d/m_i+1}^{\lambda d/n_j+1} \frac{f(x, y)}{xy} dx dy. \]

We have \(\sigma_{s,t} \geq \sigma_{s,t}^{(4)} - (\sigma_{s,t}^{(1)} + \sigma_{s,t}^{(2)} + \sigma_{s,t}^{(3)}) \). By an argument similar to that used in the proof of Theorem 1 we get inequalities similar to (16)–(18), viz.

\[\sigma_{s,t}^{(1)} \leq c_g \sum_{i=1}^{s} \sum_{j=1}^{t} |a_{ij}|, \quad \sigma_{s,t}^{(2)} \leq c_g \sum_{i=1}^{s} \sum_{j=1}^{t} \log \frac{m_{i+1}}{m_i} \left(\sum_{k=j+1}^{\infty} a_{kj}^2 \right)^{\frac{1}{2}}, \]

\[\sigma_{s,t}^{(3)} \leq c_g \sum_{i=1}^{s} \sum_{j=1}^{t} \log \frac{n_{j+1}}{n_j} \left(\sum_{k=j+1}^{\infty} a_{kj}^2 \right)^{\frac{1}{2}}. \]

We now estimate \(\sigma_{s,t}^{(4)} \) applying Lemma 6. Let \(m = \lfloor (\frac{m_{i+1}}{n_j} - 1) \lambda \rfloor \) and \(n = \lfloor (\frac{n_{j+1}}{n_j} - 1) \lambda \rfloor \). Then \(m \in \mathbb{N}, n \in \mathbb{N} \) and

\[\sigma_{s,t}^{(4)} \geq \sum_{i=1}^{s} \sum_{j=1}^{t} \sum_{\mu=1}^{m_i} \sum_{\nu=1}^{n_j} \int_{\nu d/((\mu - 1)d)}^{\lambda d/((\nu - 1)d)} S_{ij}(x, y) dx dy \]

where

\[S_{ij}(x, y) = x^{-1} y^{-1} \left| \sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{kl} \sin \frac{m_k}{m_{i+1}} x \sin \frac{n_l}{n_{j+1}} y \right|. \]
Hence by Lemma 6 we get

$$
\sigma_n^{(4)} \geq c_q \sum_{i=1}^{s} \sum_{j=1}^{t} \log \frac{m_i+1}{m_i} \log \frac{n_j+1}{n_j} \left(\sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{kl}^2 \right)^{\frac{1}{2}}.
$$

Then applying Lemma 8, by an argument similar to that for the proof of \(\sum_{i=1}^{\infty} A_{ij} < \infty \) we conclude \(V < \infty \). Then noticing

\[
T = \sum_{i=1}^{\infty} A_{i1} + \sum_{i=1}^{\infty} \sum_{j=2}^{\infty} A_{ij} \leq \sum_{i=1}^{\infty} A_{i1} + c_q V,
\]

\[
U = \sum_{j=1}^{\infty} B_{1j} + \sum_{j=1}^{\infty} \sum_{i=2}^{\infty} B_{ij} \leq \sum_{j=1}^{\infty} B_{1j} + c_q V,
\]

\[
S = \sum_{j=2}^{\infty} |a_{ij}| + \sum_{i=2}^{\infty} |a_{i1}| + |a_{11}| + \sum_{i=2}^{\infty} \sum_{j=2}^{\infty} |a_{ij}|
\]

\[
\leq c_q \sum_{j=1}^{\infty} B_{1j} + c_q \sum_{i=1}^{\infty} A_{i1} + |a_{11}| + c_q V,
\]

we derive (6). The proof is complete. \(\square \)

Remarks. (a) In our argument the series by which we define functions need not be trigonometric series because the coefficients \(m_i, n_j \) need not be integers. We must understand such series in the sense of \(L^2 \)-convergence. For example, if conditions (1) and (2) are satisfied, then the “partial sums”

\[
S_{\mu\nu}(x, y) = \sum_{i=1}^{\mu} \sum_{j=1}^{\nu} a_{ij} \sin m_i x \sin n_j y
\]

converge in \(L^2(Q) \) for any compact set \(Q \subset \mathbb{R}^2 \). This is a consequence of Lemma 1. Meanwhile we can easily demonstrate that the convergence of \(S_{\mu\nu} \) in \(L^2(Q) \) does not depend on the manner in which \(\mu \) and \(\nu \) tend to infinity. For a discussion of different kinds of multiple limits we refer the reader to [4].

(b) Since \(S_{\mu\nu} \) can be non-trigonometric sums it does not appear to be a trivial question whether the convergence of \(S_{\mu\nu} \) in \(L^2 \) implies almost everywhere convergence.

(c) Our result can be extended to higher dimensional cases in a quite straightforward manner.

(d) Since this paper was submitted in June, 1993, two related papers of interest have appeared, viz. [1], [2]. We thank the referee for providing the details.

References

Vice-Chancellor, University of Sydney, Sydney, New South Wales 2006, Australia
E-mail address: m.jackson@vcc.usyd.edu.au

Department of Mathematics, Beijing Normal University, 100871 Beijing, People’s Republic of China
E-mail address: wangky@email.bnu.edu.cn