POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS IN THE EUCLIDEAN PLANE

U. UFUKTEPE AND Z. ZHAO

(Communicated by Jeffrey B. Rauch)

Abstract. In the present paper, we study the existence of solutions to the problem
\[
\begin{aligned}
\Delta u + f(x, u) &= 0 \quad \text{in } D \\
u > 0 & \quad \text{in } D \\
u &= 0 & \quad \text{on } \partial D
\end{aligned}
\]
where \(D \) is an unbounded domain in \(\mathbb{R}^2 \) with a compact nonempty boundary \(\partial D \) consisting of finitely many Jordan curves. The goal is to prove an existence theorem for the above problem in a general setting by using Brownian path integration and potential theory.

1. Introduction

In the present paper, we study the existence of solutions to the problem
\[
\begin{aligned}
\Delta u + f(x, u) &= 0 \quad \text{in } D \\
u > 0 & \quad \text{in } D \\
u &= 0 & \quad \text{on } \partial D
\end{aligned}
\]
(1.1)
where \(D \) is an unbounded domain in \(\mathbb{R}^2 \) with a compact nonempty boundary \(\partial D \) consisting of finitely many Jordan curves. The goal is to prove an existence theorem for problem (1.1) in a general setting by using Brownian path integration and potential theory.

For \(D \subset \mathbb{R}^n, n \geq 3, D \) unbounded and with a compact Lipschitz boundary, Z. Zhao [13] proved the following problem:
\[
\begin{aligned}
\Delta u + K(x)f(u) &= 0 \quad \text{in } D \\
u > 0 & \quad \text{in } D \\
u &= 0 & \quad \text{on } \partial D
\end{aligned}
\]
(1.2)
if \(K \) is a Borel measurable function in \(D \) satisfying that the family \(\{ \frac{K(x)}{|x|^p} \} \) is uniformly integrable over \(D \) with a parameter \(x \in D \), and \(f \) is a continuous function in \((0, b)\) for some \(0 < b \leq \infty \) satisfying that:
\[
\lim_{w \to 0^+} \frac{f(w)}{w} = 0.
\]

Received by the editors March 10, 1997.
1991 Mathematics Subject Classification. Primary 60J45, 60J65.
Then the problem (1.2) has infinitely many bounded solutions. More precisely, there exists $b_0 \in (0, b]$ such that for each $c \in (0, b_0]$ there exists a solution u of (1.2) satisfying

$$
\lim_{|x| \to \infty} u(x) = c.
$$

A similar nonlinear problem for the second order ordinary differential equations is studied in [14]. We state our main result as

Theorem 1.1 (The Main Theorem). Let D be an unbounded domain in \mathbb{R}^2 with a compact nonempty boundary ∂D consisting of finitely many Jordan curves. Suppose that $f(x, s)$ is a Borel measurable function in $\mathbb{R}^2 \times \mathbb{R}^+$ and $f(x, \cdot)$ is a continuous and continuously differentiable function $F(x, s)$ in $\mathbb{R}^2 \times \mathbb{R}^+$ satisfying the conditions

$$
|f(x, s)| \leq F(x, s), \quad (x, s) \in \mathbb{R}^2 \times \mathbb{R}^+, \quad (1.3)
$$

$$
F(x, 0) = F_s(x, 0) = 0, \quad (1.4)
$$

and

$$
F_s(x, \ln(|x| + 1)) \in K_2^\infty, \quad (1.5)
$$

then the problem

$$
\left\{ \begin{array}{ll}
\Delta u + f(x, u) = 0 & \text{in } D \\
u > 0 & \text{in } D \\
u = 0 & \text{on } \partial D
\end{array} \right. \quad (1.6)
$$

has infinitely many solutions. More precisely there exists a number $b > 0$ such that for each $c \in (0, b]$, (1.6) has a solution u satisfying

$$
\lim_{|x| \to \infty} \frac{u(x)}{\ln |x|} = c. \quad (1.7)
$$

Remark. A special case of the above general setting is the semilinear problem for any V in K_2, and $p > 1$: If we take $f(x, s) = V(x)s^p$ and $F(x, s) = |V(x)|s^p$, then problem (1.1) becomes the corresponding problem for the semilinear elliptic equation

$$
\left\{ \begin{array}{ll}
\Delta u + V(x)u^p = 0 & \text{in } D \\
u > 0 & \text{in } D \\
u = 0 & \text{on } \partial D.
\end{array} \right. \quad (1.8)
$$

Then f and F satisfy (1.3) and (1.4) obviously. Condition (1.5) on F is equivalent to

$$
\int_{|x| \geq 1} |V(x)||\ln(1 + |x|)|^p dx < \infty.
$$

2. Green functions and h-conditional Brownian motion

In this section we collect the results on Green functions in \mathbb{R}^2 and h-conditional Brownian motion.
The Kato class K_2 is defined to be the set of all Borel measurable functions on \mathbb{R}^2 satisfying

\[
\lim_{\alpha \downarrow 0} \sup_{x \in \mathbb{R}^2} \int_{|y-x|<\alpha} \frac{1}{|y-x|} \ln \frac{1}{|y-x|} |q(y)|dy = 0
\]

where $q : \mathbb{R}^2 \to \mathbb{R}$ is measurable. K_2 is an important class of the potential functions for the Schrödinger operator. Another potential class K_2^∞ which was introduced in [5] is as follows:

\[
K_2^\infty = \left\{ q \in K_2 : \int \frac{1}{|y|} \ln \frac{1}{|y|} |q(y)|dy < \infty \right\}
\]

Let $\{X_t\}$ be 2-dimensional Brownian motion (see [2]). For any open or closed set A in \mathbb{R}^2, let

\[
T_A(\omega) = \inf\{t > 0 : X_t(\omega) \in A\}
\]

This is called the hitting time of A. The hitting time of A^c is called the exit time from A and denoted by τ_A. We shall use P_x to denote the probability measure on the Brownian continuous paths starting at x. E_x is the expectation on P_x. Let $G_D(x,y)$ be the Green function for D. We list some known results.

For any Borel function φ in D the Green operator is defined as

\[
G_D \varphi(x) = E_x \left[\int_0^{T_D} \varphi(X_t)dt \right] = \int_D G_D(x,y)\varphi(y)dy,
\]

and

\[
\Delta(G_D \varphi) = -2\varphi.
\]

Proposition 2.1. Let D be an unbounded domain in \mathbb{R}^2 with a compact nonempty boundary ∂D consisting of finitely many Jordan curves. Then there exists a harmonic function $h > 0$ in \overline{D} such that

\[
\lim_{D \ni x \to z} h(x) = 0 \quad \forall z \in \partial D,
\]

and

\[
\lim_{|x| \to \infty} \frac{h(x)}{\ln |x|} = 1.
\]

Proof. Pick a point $a \in \mathbb{R}^2 \setminus \overline{D}$ and $r > 0$ (small enough) such that $B(a, r) \subset \mathbb{R}^2 \setminus \overline{D}$. Let $x^* = a + r^2 \frac{(x-a)}{|x-a|^2}$ be the Kelvin inversion from $D \cup \{\infty\}$ onto D^*, where $D^* = \{x^* \in B(a, r) : x \in D \cup \{\infty\}\}$. Since the Kelvin inversion preserves harmonic functions and D^* is bounded Jordan domain, we have

\[
G_D(x,y) = G_{D^*}(x^*, y^*), \quad \forall x, y \text{ in } D.
\]

Let

\[
h(x) = \pi G_{D^*}(x^*, a).
\]
Thus, we have
\begin{equation}
\lim_{y \to \infty} \pi G_D(x,y) = \lim_{y^* \to a} \pi G_D^*(x^*,y^*) = \pi G_D^*(x^*,a).
\end{equation}

The rest of the proof is just the properties of the Green function in the bounded domain.

Now we can develop the notion of conditional Brownian motion introduced by Doob for a general theory. Let \(h \) be a harmonic function in \(D \). We define
\[
p_D^h(t;x,y) = h(x) - \frac{1}{p_D(t;x,y)} h(y), \quad t > 0, \quad x, y \in D,
\]
where \(p_D \) is the transition density of the killed Brownian motion. \(p_D^h(t;x,y) \) satisfies the conditions for a transition density. Let \(P_x^h \) and \(E_x^h \) denote respectively the probability and expectation determined by the \(h \)-conditional Brownian motion starting at \(x \). Then we have for all \(f \in \mathcal{B}^+(D) \):
\[
E_x^h[t < \tau_D; f(X_t)] = h(x) - \frac{1}{p_D(t;x,y)} E_x^h[t < \tau_D; f(X_t)h(X_t)], \quad x \in D.
\]

\section*{Theorem 2.2 (3-G)} Let \(D \subset \mathbb{R}^2 \) be as in Proposition 2.1. Then there exists a constant \(C > 0 \) depending on \(D \) only such that
\[
\forall x,y,z \in D : \quad \pi G_D(x,y) \pi G_D(y,z) \pi G_D(x,z) \leq C (\pi G_D(x,y) + \pi G_D(y,z) + 1).
\]

\begin{proof}
We used Kelvin transformation to reduce to the bounded Jordan domain case (see \cite{2}). For \(n \geq 3 \), the 3-G theorem for the unbounded Lipschitz domain was proved by Herbst and Zhao \cite{6} based on \cite{4}.
\end{proof}

\section*{Proposition 2.3} If \(q \in K_2^\infty \), then \(q \in L^1(\mathbb{R}^2) \).

\begin{proof}
Let \(q \in K_2^\infty \). Then by definition of \(K_2^\infty \), \(q \in K_2 \). So there exists \(\alpha_1 > 0 \) such that
\begin{equation}
\sup_{x \in \mathbb{R}^2} \int_{|y-x| \leq \alpha_1} \frac{1}{|x-y|} |q(y)|dy < 1
\end{equation}
and
\begin{equation}
\int_{|y| \geq e} \ln |y| |q(y)|dy < \infty.
\end{equation}

Let \(\alpha = \min(\alpha_1, e^{-1}) \). For the compact set \(\bar{B} = \bar{B}(0,e) \), there exists finite points \(x_i, i = 1, \ldots, L \), such that \(\bar{B} \subseteq \bigcup_{i=1}^L B(x_i, \alpha) \) and \(\forall i = 1, \ldots, L, \ y \in B(x_i, \alpha) \) we have \(\ln \frac{1}{|x_i-y|} \geq \ln \frac{1}{e} = 1 \). Then by (2.8)
\begin{equation}
\int_{|y| \leq e} |q(y)|dy \leq \sum_{i=1}^L \int_{B(x_i, \alpha)} |q(y)|dy
\end{equation}
\begin{equation}
\leq \sum_{i=1}^L \int_{B(x_i, \alpha)} \ln \frac{1}{|x_i-y|} |q(y)|dy
\leq L.
\end{equation}
Since \(q \in K^\infty_2 \), we have

\[
\int_{|y| > e} |q(y)|dy \leq \int |y| |q(y)|dy < \infty. \tag{2.11}
\]

Thus, by (2.10) and (2.11)

\[
\int_{\mathbb{R}^2} |q(y)|dy \leq \int_{|y| > e} |q(y)|dy + L < \infty.
\]

3. Uniformly integrable functions

This is the main technical section in which we investigate uniform integrability of the family of the functions \(\{G_D(x, \cdot)|q(\cdot)|\} \) and \(\{\frac{1}{h(x)}G_D(x, \cdot)h(\cdot)|q(\cdot)|\} \).

Since \(D \supset B_r^x = \mathbb{R}^2 \setminus B(a, r) \), using the explicit formula of \(G_{B_r^x}(\cdot, \cdot) \) and the definition of \(K^\infty_2 \), we can prove:

Proposition 3.1. For \(q \in K^\infty_2 \), the family of functions \(\{G_D(x, \cdot)|q(\cdot)|\} \) with parameter \(x \in D \) is uniformly integrable over \(D \).

We define

\[
\|q\|_D = \sup_{x \in D} \int_D G(x, y)|q(y)|dy, \tag{3.1}
\]

and

\[
\|q\|_1 = \int_D |q(y)|dy. \tag{3.2}
\]

Proposition 3.2. Let \(D \) and \(h \) be as in Proposition 2.1. Then for any \(q \in K^\infty_2 \), we have

(a) \(\{\frac{1}{h(x)}G_D(x, \cdot)h(\cdot)|q(\cdot)| : x \in D\} \) is uniformly integrable.

(b) There exists a constant \(c_D \) such that \(\forall x \in D : \)

\[
\frac{1}{h(x)} \int_D G_D(x, y)h(y)|q(y)|dy \leq c_D(\|q\|_D + \|q\|_1). \tag{3.3}
\]

Proof. By Theorem (3-G), there exists \(C > 0 \) such that

\[
\frac{G_D(x, y)G_D(y, z)|q(y)|}{G_D(x, z)} \leq C(G_D(x, y) + G_D(y, z) + 1)|q(y)|. \tag{3.4}
\]

Recalling \(h(x) = \lim_{z \to \infty} \pi G_D(x, z) \), and using Proposition 3.1 and the fact \(q \in L^1(D) \), we can obtain that \(\{\frac{1}{h(x)}G_D(x, \cdot)h(\cdot)|q(\cdot)| : x \in D\} \) is uniformly integrable. Thus, (a) follows.
By taking the integral of (3.4) with respect to y, we have

$$
\frac{1}{GD(x,z)} \int_{D} GD(x,y)GD(y,z)|q(y)|dy
\leq C(\int_{D} GD(x,y)|q(y)|dy + \int_{D} GD(y,z)|q(y)|dy + \int_{D} |q(y)|dy)
\leq c_D(\|q\|_D + \|q\|_1),
$$

where $c_D = 2C$. By taking the limit of (3.5) as $z \to \infty$, we have by Fatou's lemma:

$$\frac{1}{h(x)} \int_{D} GD(x,y)h(y)|q(y)|dy \leq c_D(\|q\|_D + \|q\|_1).$$

\[\square\]

Proposition 3.3. Let D and h be as in Proposition 2.1. Let $q \in K_2^\infty$. If

$$\sup_{x \in D} E_h^x \left[\int_0^\tau D q(X_s)ds \right] \leq \frac{1}{2},$$

then the function

$$w(x) = h(x)E_h^x \left[e^{\int_0^\tau D q(X_s)ds} \right], \quad \forall x \in D,
$$

is well defined in D and satisfies that $\forall x \in D$

$$e^{-\frac{1}{2}} h(x) \leq w(x) \leq 2h(x),$$

and

$$w(x) = h(x) + \int_{D} GD(x,y)q(y)w(y)dy.
$$

Proof. By Khas’minskii’s lemma, we have by (3.6),

$$E_h^x \left[e^{\int_0^\tau D q(X_s)ds} \right] \leq 2.
$$

By Jensen’s inequality and (3.6), we have

$$e^{-\frac{1}{2}} \leq E_h^x \left[e^{\int_0^\tau D q(X_s)ds} \right].
$$

Thus, it follows by (3.7), (3.10), and (3.11) that

$$h(x)e^{-\frac{1}{2}} \leq w(x) \leq 2h(x).$$
The equality (3.9) will be obtained by calculation on the conditional Brownian paths:

\[w(x) - h(x) = h(x) E^x \left[e^{\int_0^{\tau_D} q(X_s) ds} - 1 \right] \]

\[= h(x) E^x \left[\int_0^{\tau_D} q(X_t) e^{\int_0^{\tau_D} q(X_s) ds} dt \right] \]

\[= h(x) \int_0^\infty E^x \left[t < \tau_D : q(X_t) e^{\int_0^{\tau_D} q(X_s) ds} \right] dt \]

\[= h(x) \int_0^\infty E^x \left[t < \tau_D : q(X_t) E_h^{X_t} \left[e^{\int_0^{\tau_D} q(X_s) ds} \right] \right] dt \]

(by the Markov property for the conditional Brownian motion)

\[\int_0^\infty E^x \left[t < \tau_D ; q(X_t) h(X_t) E_h^{X_t} \left[e^{\int_0^{\tau_D} q(X_s) ds} \right] \right] dt \]

\[\int_0^\infty E^x \left[t < \tau_D ; q(X_t) w(X_t) \right] dt \]

\[= \int_D G_D(x, y) q(y) w(y) dy. \]

\[\square \]

4. Proof of the Main Theorem

Let \(D^\infty = \bar{D} \cup \{ \infty \} \) be the compactification of \(D \). Let

\[\mathcal{P}(D) = \{ \psi \in C(D) : \lim_{x \to \pm \infty} \psi(x) \text{ and } \lim_{|x| \to \infty} \psi(x) \text{ exist and are finite} \}. \]

Obviously \(\mathcal{P}(D) \) is isometric to \(C(D^\infty) \). \(\mathcal{P}(D) \) is a Banach space, with the norm

\[||\psi|| = \sup_{x \in D} |\psi(x)|. \]

Let \(q_0 \) be a positive function belonging to \(K_2^\infty \), and let

\[Q_0 = \{ q \in K_2^\infty : |q(x)| \leq q_0(x), \forall x \in D \}. \]

Proposition 4.1. For a fixed \(q_0 > 0 \) and \(q_0 \in K_2^\infty \), and the harmonic function \(h \) as defined in Proposition 2.1, the family of the functions

\[G_D^h[q_0] = \left\{ \frac{1}{h(\cdot)} \int_D G_D(\cdot, y) h(y) q(y) dy : q \in Q_0 \right\} \]

is uniformly bounded and equicontinuous in \(D \), and consequently it is relatively compact in \(\mathcal{P}(D) \).

Remark. In order to imply the relative compactness of the family in the supremum norm, the equicontinuity of the family in \(\mathcal{P}(D) \) should include that the two limits in (4.1) converge uniformly for all functions in the family. This is a modification of the classical Ascoli-Arzel`a theorem.
Proof. The uniform integrability of \(\left\{ \frac{1}{\|x\|} G(x, \cdot) h(\cdot) q(\cdot) : x \in D \right\} \), by Proposition 3.2, justifies the interchange of the limit and integration, hence we obtain that the function

\[
L_q(x) \equiv \frac{1}{h(x)} \int_D G_D(x,y)h(y)q(y)dy
\]

is continuous. \(\lim_{|x| \to \infty} L_q(x) \) and \(\lim_{x \to z \in \partial D} L_q(x) \) exist and are finite. Thus, \(L_q \) belongs to \(\mathcal{P}(D) \). For any \(q \in Q_0 \), by (4.2) and 3.2 we have

\[
\sup_{x \in D} \int_D \frac{G_D(x,y)}{h(x)} \cdot h(y)q(y)dy \leq \sup_{x \in D} \int_D \frac{G_D(x,y)}{h(x)} h(y)q_0(y)dy
\]

\[
\leq c_D (\|q_0\|_D + \|q_0\|_1).
\]

Thus, \(G_D^h[Q_0] \) is uniformly bounded. By using the uniform integrability of \(\left\{ \frac{1}{\|x\|} G_D(x, \cdot) h(\cdot) q(\cdot) \right\} \), we have

i) \(\forall q \in Q_0, \forall z \in \overline{D}, \) as \(x, x' \to z \):

\[
\left| \int_D \frac{G_D(x,y)}{h(x)} h(y)q(y)dy - \int_D \frac{G_D(x',y)}{h(x')} h(y)q(y)dy \right|
\]

\[
\leq \int_D \left| \frac{G_D(x,y)}{h(x)} - \frac{G_D(x',y)}{h(x')} \right| h(y)q(y)dy
\]

\[
\leq \int_D \left| \frac{G_D(x,y)}{h(x)} - \frac{G_D(x',y)}{h(x')} \right| h(y)q_0(y)dy \to 0,
\]

since \(x - x' \to 0 \).

ii) \(\forall q \in Q_0, \)

\[
\int_D \frac{G_D(x,y)}{h(x)} h(y)q(y)dy \leq \int_D \frac{G_D(x,y)}{h(x)} h(y)q_0(y)dy \to 0
\]

as \(|x| \to \infty \).

Thus, \(G_D^h[Q_0] \) is equicontinuous in \(\mathcal{P}(D) \), and the limits in (4.1) converge uniformly for all functions in \(G_D^h[Q_0] \). Then by the Ascoli-Arzelà theorem \(G_D^h[Q_0] \) is relatively compact in \(\mathcal{P}(D) \).

Proof of the Main Theorem. Let \(b > 0 \) be the real number determined later and, for \(c \in (0, b] \), let

\[
\Lambda = \left\{ v \in \mathcal{P}(D) \; : \; ce^{-\frac{1}{2}} \leq v(x) \leq 2c, \; \forall x \in D \right\}.
\]

For each \(v \in \Lambda \) define

\[
Tv(x) = cE^x \left[e^{\int_0^t \varphi_0(x) dt} \right], \; \forall x \in D,
\]
where

\[(4.6) \quad q_v(x) = \frac{f(x, v(x)h(x))}{2v(x)h(x)}.\]

For each \(x \in D\), by using condition (1.3), (1.4) and the mean value theorem we showed that

\[(4.7) \quad \left| \frac{f(x, v(x)h(x))}{2v(x)h(x)} \right| \leq F_s(x, 2\eta \ln(|x| + 1)).\]

We now have

\[
E_h^x \left[\int_0^{T_D} |q_v(X_t)| dt \right] = \frac{1}{h(x)} E^x \left[\int_0^{T_D} \frac{h(X_t)|f(X_t, v(X_t)h(X_t))|}{2v(X_t)h(X_t)} dt \right]
\]

\[
= \frac{1}{h(x)} \int_D G_D(x, y)h(y)|f(y, v(y)h(y))| \frac{dy}{2v(y)h(y)}
\]

(by (4.7) and the 3-G Theorem)

\[(4.8) \quad \leq C \int (G_D(x, y) + h(y) + 1) F_s(y, 2\eta \ln(|y| + 1)) dy.
\]

Since \(F_s(y, \ln(|y| + 1)) \in K_2^\infty \subseteq K_2\), there exists \(\alpha \in (0, 1)\) such that

\[(4.9) \quad \sup_{x \in D} \frac{1}{\pi} \int_{|y-x|<\alpha} \ln \left| \frac{1}{y-x} \right| F_s(y, \ln(|y| + 1)) dy < \frac{1}{4C}.
\]

By using \(F_s(y, \ln(|y| + 1)) \in K_2^\infty\) again, we have by Proposition 2.3

\[
\left\{ h(y) + 1 + \frac{1}{\pi} \left[C_r + \ln \left(\frac{1}{\alpha} + 2 \ln |y-a| \right) \right] \right\} F_s(y, \gamma \ln(|y| + 1)) dy < \frac{1}{4C}.
\]

Thus, using the monotone convergence theorem and noting that \(F_s(y, 0) = 0\) and that \(F_s(y, \cdot)\) is a nondecreasing function, there exists \(\gamma \in (0, 1)\) such that

\[(4.10) \quad \int_D \left[C_r + \ln \left(\frac{1}{\alpha} + 2 \ln |y-a| \right) \right] F_s(y, \gamma \ln(|y| + 1)) dy < \frac{1}{4C}.
\]

Now, we determine \(b\) by letting

\[(4.11) \quad b = \frac{\gamma}{2\eta}.
\]

Thus, \(\forall x \in D\), for \(c \in (0, b]\), \(2\eta c \leq \gamma < 1\), we have

\[(4.12) \quad \int_D G_D(x, y) F_s(y, 2\eta c \ln(|y| + 1)) dy \leq \int_D G_{B^\infty(a)}(x, y) F_s(y, \gamma \ln(|y| + 1)) dy
\]

\[
\leq \frac{1}{\pi} \int_D (C_r + 2 \ln |y-a| + \ln |x-y|^{-1}) F_s(y, \gamma \ln(|y| + 1)) dy
\]

by (4.9)

\[
\leq \frac{1}{4C} + \frac{1}{\pi} \int_D \left(C_r + 2 \ln |y-a| + \ln \frac{1}{\alpha} \right) F_s(y, \gamma \ln(|y| + 1)) dy.
\]
It follows from (4.8), (4.10), and (4.12) that
\begin{equation}
\sup_{x \in D} E_h^x \left[\int_0^\tau |q_v(X_t)| dt \right] \leq \frac{1}{2}.
\end{equation}

Similarly,
\begin{equation}
\sup_{x \in D} E_h^x \left[\int_0^\tau F_s(X_t, 2cq \ln(|x_t| + 1)) \right] \leq \frac{1}{2}.
\end{equation}

Thus by (4.5), (4.13) and Proposition 3.3 we have
\begin{equation}
ce^{-\frac{1}{2}} \leq Tv(x) \leq 2c,
\end{equation}

and
\begin{equation}
Tv(x) = c + \frac{1}{h(x)} \int_D G_D(x, y) h(y) q_v(y) Tv(y) dy.
\end{equation}

By (4.15) and the uniform integrability of \(\left\{ \frac{1}{h(x)} G_D(x, \cdot) h(\cdot) q(\cdot) : x \in D \right\} \), we see that \(\lim_{x \to 0} TV(x) \) and \(\lim_{x \to \infty} TV(x) \) exist and are finite. \(TV \) is continuous in \(D \). Thus, \(TV \in P(D) \) and \(TV \in \Lambda \), so
\begin{equation}
T \Lambda \subseteq \Lambda.
\end{equation}

For any \(v \in \Lambda \), by (4.7):
\[|q_v(y)Tv(y)| \leq 2cF_s(y, \ln(|y| + 1)). \]

Let \(q_0(y) = 2cF_s(y, \ln(|y| + 1)) \) and let \(Q_0 \) be given as in (4.1). It follows that
\begin{equation}
q_v(\cdot)Tv(\cdot) \in Q_0,
\end{equation}

and
\[\left\{ \frac{1}{h(\cdot)} \int_D G_D(\cdot, y) h(y) q_v(y) Tv(y) dy : v \in \Lambda \right\} \subseteq C^h_D[Q_0]. \]

We thus have by Proposition 4.1 that \(T \Lambda \) is a relatively compact set in \(P(D) \). We shall prove the continuity of \(T \) in \(\Lambda \) in the supremum norm. Let \(v_n \to v \) in \(\Lambda \) as \(n \to \infty \). Since \(\tau < \infty \) for \(P^x \)-almost Brownian paths, we have by the continuity of function \(f \) and the bounded convergence theorem that for almost every Brownian path:
\begin{equation}
\int_0^{\tau_D} f(X_t, v_n(X_t) h(X_t)) dt \to \int_0^{\tau_D} f(X_t, v(X_t) h(X_t)) dt.
\end{equation}

Since \(\{v_n\} \subseteq \Lambda \), each term of the sequence in (4.19) is bounded by
\[\int_0^{\tau_D} F_s(X_t, 2cq \ln(|X_t| + 1)) dt. \]

By (4.14) and Khas’minskii’s lemma
\begin{equation}
E_h^x \left[e^{\int_0^{\tau_D} F_s(X_t, 2cq \ln(|X_t| + 1)) dt} \right] \leq 2 < \infty,
\end{equation}

and hence it follows from (4.19), (4.20), and the dominated convergence theorem that \(\forall x \in D \)
\[E_h^x \left[e^{\int_0^{\tau_D} q_v(X_t) dt} \right] \to E_h^x \left[e^{\int_0^{\tau_D} q_v(X_t) dt} \right]. \]
Thus by (4.5)

\[(4.21) \quad Tv_n(x) \to Tv(x)\]

as \(n \to \infty\). We have proved that \(TA\) is a relatively compact family, therefore the pointwise convergence in (4.21) implies the uniform convergence, namely, \(\|Tv_n - Tv\| \to 0\) as \(n \to \infty\). Thus, we proved that \(T\) is a compact and continuous mapping from \(A\) to itself. By the definition of \(A\), \(A\) is obviously a nonempty, closed, bounded, and convex set in \(P(D)\). Hence by the Schauder fixed-point theorem, there exists a function \(v \in A\) such that

\[(4.22) \quad Tv = v.\]

It follows from (4.16) and (4.22) that

\[(4.23) \quad v(x) = c + \frac{1}{h(x)} \int_D G_D(x,y)h(y)q_v(y)v(y)dy.\]

Now let

\[(4.24) \quad u(x) = h(x)v(x).\]

Since \(v \geq ce^{-\frac{1}{2}}\) and \(h > 0\) in \(D\), \(u > 0\) in \(D\). By (4.6), (4.23), and (4.24), we have

\[(4.25) \quad u(x) = ch(x) + \frac{1}{2} \int_D G_D(x,y)f(y,u(y))dy.\]

Since \(h\) is harmonic in \(D\), applying \(\Delta\) to both sides of (4.25) and using \(\Delta(G_D f) = -2f\), we have

\[(4.26) \quad \Delta u(x) = \frac{1}{2} \Delta \left[\int_D G_D(x,y)f(y,u(y))dy \right] = -f(x,u(x)).\]

By the property of \(h\) and the boundedness of \(v\), we have

\[(4.27) \quad \lim_{x \to \partial D} u(x) = 0\]

and

\[(4.28) \quad \lim_{|x| \to \infty} \frac{u(x)}{|x|\ln |x|} = \lim_{|x| \to \infty} \frac{v(x)h(x)}{|x|\ln |x|} = c.\]

We thus complete the proof. \(\square\)

References

8. W.-M. Ni, “On the elliptic equation $\Delta u + K(x)u^{(n+2)/(n-2)} = 0$, its
MR 87k:60190
11. Z. Zhao, “Green Functions for Schrödinger operator and conditioned Feynman-Kac
12. Z. Zhao, “Green Functions and conditioned gauge theorem for a 2-dimensional domain”,
13. Z. Zhao, “On the Existence of Positive Solutions of Nonlinear Elliptic Equations-A proba-
14. Z. Zhao, “Positive Solutions of Nonlinear Second Order Ordinary Differential Equations”,

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211
Current address, U. Ufuktepe: Akdeniz Universitesi, Fen-Edebiyat Fakultesi, Matematik
Bolumu, 07058 Antalya, Turkey
E-mail address: uunal@pascal.sci.akdeniz.edu.tr
E-mail address: mathzz@missou1.missouri.edu