Periodic solutions for nonconvex differential inclusions
HTML articles powered by AMS MathViewer
- by Shouchuan Hu, Dimitrios A. Kandilakis and Nikolaos S. Papageorgiou
- Proc. Amer. Math. Soc. 127 (1999), 89-94
- DOI: https://doi.org/10.1090/S0002-9939-99-04338-5
- PDF | Request permission
Abstract:
In this paper we prove the existence of periodic solutions for differential inclusions with nonconvex-valued orientor field. Our proof is based on degree theoretic arguments.References
- Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330, DOI 10.1007/978-3-642-69512-4
- Alberto Bressan and Giovanni Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), no. 1, 69–86. MR 947921, DOI 10.4064/sm-90-1-69-86
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- Georges Haddad and Jean-Michel Lasry, Periodic solutions of functional-differential inclusions and fixed points of $\sigma$-selectionable correspondences, J. Math. Anal. Appl. 96 (1983), no. 2, 295–312. MR 719317, DOI 10.1016/0022-247X(83)90042-2
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. XXXI, American Mathematical Society, Providence, R.I., 1974. Third printing of the revised edition of 1957. MR 0423094
- Shou Chuan Hu and Nikolaos S. Papageorgiou, On the existence of periodic solutions for nonconvex-valued differential inclusions in $\mathbf R^N$, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3043–3050. MR 1301503, DOI 10.1090/S0002-9939-1995-1301503-6
- Jack W. Macki, Paolo Nistri, and Pietro Zecca, The existence of periodic solutions to nonautonomous differential inclusions, Proc. Amer. Math. Soc. 104 (1988), no. 3, 840–844. MR 931741, DOI 10.1090/S0002-9939-1988-0931741-X
- J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, Providence, R.I., 1979. Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. MR 525202
- Nikolaos S. Papageorgiou, On infinite-dimensional control systems with state and control constraints, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 1, 65–77. MR 1051092, DOI 10.1007/BF02881116
- Nikolaos S. Papageorgiou, On Fatou’s lemma and parametric integrals for set-valued functions, J. Math. Anal. Appl. 187 (1994), no. 3, 809–825. MR 1298822, DOI 10.1006/jmaa.1994.1391
- Sławomir Plaskacz, Periodic solutions of differential inclusions on compact subsets of $\textbf {R}^n$, J. Math. Anal. Appl. 148 (1990), no. 1, 202–212. MR 1052055, DOI 10.1016/0022-247X(90)90038-H
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI 10.1137/0315056
Bibliographic Information
- Shouchuan Hu
- Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
- Email: hu@math.smsu.edu
- Dimitrios A. Kandilakis
- Affiliation: Department of Mathematics, University of the Aegean, 83200 Karlovassi, Samos, Greece
- Nikolaos S. Papageorgiou
- Affiliation: Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
- MR Author ID: 135890
- Email: npapg@math.ntua.gr
- Received by editor(s): September 23, 1996
- Additional Notes: The second author’s research was supported by Grant PENED 678(94)
- Communicated by: Hal L. Smith
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 89-94
- MSC (1991): Primary 34C25, 34A60
- DOI: https://doi.org/10.1090/S0002-9939-99-04338-5
- MathSciNet review: 1451808