On the topology of isoparametric hypersurfaces with four distinct principal curvatures
HTML articles powered by AMS MathViewer
- by Fuquan Fang
- Proc. Amer. Math. Soc. 127 (1999), 259-264
- DOI: https://doi.org/10.1090/S0002-9939-99-04490-1
- PDF | Request permission
Abstract:
Let $(m_-,m_+)$ be the pair of multiplicities of an isoparametric hypersurface in the unit sphere $S^{n+1}$ with four distinct principal curvatures —w.r.g., we assume that $m_-\le m_+$. In the present paper we prove that, in the case 4B2 of U. Abresch (Math. Ann. 264 (1983), 283–302) (i.e., where $3m_-=2(m_++1)$), $m_-$ must be either 2 or 4. As a by-product, we prove that the focal manifold $F_-$ of an isoparametric hypersurface is homeomorphic to a $S^{m_+}$ bundle over $S^{m_++m_-}$ if one of the following conditions holds: (1) $m_+>m_->1$ and $m_+=3,5,6$ or $7\pmod {8}$; (2) $m_+>2m_->2$ and $m_+=0\pmod {4}$. This generalizes partial results of Wang (1988) about the topology of Clifford type examples. Consequently, the hypersurface is homeomorphic to an iterated sphere bundle under the above condition.References
- Uwe Abresch, Notwendige Bedingungen für isoparametrische Hyperflächen in Sphären mit mehr als drei verschiedenen Hauptkrümmungen, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 146, Universität Bonn, Mathematisches Institut, Bonn, 1982 (German). MR 701112
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. II, Amer. J. Math. 81 (1959), 315–382. MR 110105, DOI 10.2307/2372747
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- A. Haefliger, Differentiable embeddings of $S^n$ in $S^{n+q}$ for $q>2$, Ann. of Math. 83 (1966), 402–436.
- C. S. Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661–667. MR 177412, DOI 10.1090/S0002-9904-1965-11387-8
- Hans Friedrich Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), no. 1, 57–71 (German). MR 583825, DOI 10.1007/BF01420281
- Zi Zhou Tang, Isoparametric hypersurfaces with four distinct principal curvatures, Chinese Sci. Bull. 36 (1991), no. 15, 1237–1240. MR 1138588
- Edward C. Turner, Diffeomorphisms of a product of spheres, Invent. Math. 8 (1969), 69–82. MR 250323, DOI 10.1007/BF01418871
- Qi Ming Wang, On the topology of Clifford isoparametric hypersurfaces, J. Differential Geom. 27 (1988), no. 1, 55–66. MR 918456
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- F. Fang, Multiplicities of principal curvatures of isoparametric hypersurfaces, Max-Planck Institut Preprint 96–80.
- S. Stolz, Multiplicities of Dupin hypersurfaces, Max-Planck Institut Preprint 97-25.
Bibliographic Information
- Fuquan Fang
- Affiliation: Nankai Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
- Email: ffang@sun.nankai.edu.cn
- Received by editor(s): June 21, 1995
- Received by editor(s) in revised form: February 1, 1996, and April 30, 1997
- Communicated by: Christopher Croke
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 259-264
- MSC (1991): Primary 53C40; Secondary 53B25
- DOI: https://doi.org/10.1090/S0002-9939-99-04490-1
- MathSciNet review: 1458870