Tautness and complete hyperbolicity of domains in $\mathbb {C}^n$
HTML articles powered by AMS MathViewer
- by Hervé Gaussier
- Proc. Amer. Math. Soc. 127 (1999), 105-116
- DOI: https://doi.org/10.1090/S0002-9939-99-04492-5
- PDF | Request permission
Abstract:
We prove that the existence of a local peak holomorphic function at each boundary point of an unbounded domain and at infinity implies the complete hyperbolicity of this domain, and we give a link between local tautness and global tautness of a domain. We end the note with some examples of taut and complete hyperbolic domains arising from the study of domains with noncompact automorphisms group.References
- Eric Bedford and John Erik Fornaess, A construction of peak functions on weakly pseudoconvex domains, Ann. of Math. (2) 107 (1978), no. 3, 555–568. MR 492400, DOI 10.2307/1971128
- E. Bedford and S. I. Pinchuk, Domains in $\textbf {C}^2$ with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135(177) (1988), no. 2, 147–157, 271 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 1, 141–151. MR 937803, DOI 10.1070/SM1989v063n01ABEH003264
- E. Bedford and S. I. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), no. 5, 3–26 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 1–20. MR 1275970, DOI 10.1070/SM1995v082n01ABEH003550
- François Berteloot, Characterization of models in $\mathbf C^2$ by their automorphism groups, Internat. J. Math. 5 (1994), no. 5, 619–634. MR 1297410, DOI 10.1142/S0129167X94000322
- Sanghyun Cho, A lower bound on the Kobayashi metric near a point of finite type in $\textbf {C}^n$, J. Geom. Anal. 2 (1992), no. 4, 317–325. MR 1170478, DOI 10.1007/BF02934584
- B.Coupet, H.Gaussier, A.Sukhov, On local version of Fefferman’s mapping theorem, Preprint.
- Bernard Coupet, Sergey Pinchuk, and Alexandre Sukhov, On boundary rigidity and regularity of holomorphic mappings, Internat. J. Math. 7 (1996), no. 5, 617–643. MR 1411304, DOI 10.1142/S0129167X96000335
- B.Coupet, A.Sukhov, On CR mappings between pseudoconvex hypersurfaces of finite type in $\mathbb C^2,$ Duke Math. J. 88 (1997), 281–304.
- John P. D’Angelo, Finite type conditions for real hypersurfaces, J. Differential Geometry 14 (1979), no. 1, 59–66 (1980). MR 577878
- Donato Pertici, CR-structure and Riemannian geometry of hypersurfaces of $\textbf {C}^n$, Rend. Circ. Mat. Palermo (2) 33 (1984), no. 3, 382–406 (Italian, with English summary). MR 779943, DOI 10.1007/BF02844502
- Klas Diederich and Gregor Herbort, Pseudoconvex domains of semiregular type, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 127–161. MR 1319347
- H.Gaussier, Caractérisation de domaines et d’hypersurfaces convexes, Thesis (1996), Marseille.
- Robert E. Greene and Steven G. Krantz, Characterizations of certain weakly pseudoconvex domains with noncompact automorphism groups, Complex analysis (University Park, Pa., 1986) Lecture Notes in Math., vol. 1268, Springer, Berlin, 1987, pp. 121–157. MR 907058, DOI 10.1007/BFb0097301
- N.Kerzman, Taut manifolds and domains of holomorphy in $\mathbb C^n$, Notices AMS 16 (1969), 675–676.
- Norberto Kerzman and Jean-Pierre Rosay, Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut, Math. Ann. 257 (1981), no. 2, 171–184 (French). MR 634460, DOI 10.1007/BF01458282
- Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, DOI 10.1090/S0002-9904-1976-14018-9
- Sergey Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 151–161. MR 1128522, DOI 10.1090/pspum/052.1/1128522
- Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de $\textbf {C}^{n}$ par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91–97 (French, with English summary). MR 558590
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- B. Wong, Characterization of the unit ball in $\textbf {C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 492401, DOI 10.1007/BF01403050
- H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. MR 224869, DOI 10.1007/BF02392083
- Ji Ye Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587–614. MR 1276938, DOI 10.1090/S0002-9947-1995-1276938-5
Bibliographic Information
- Hervé Gaussier
- Affiliation: Centre de Mathematiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: gaussier@gyptis.univ-mrs.fr
- Received by editor(s): December 10, 1996
- Received by editor(s) in revised form: April 30, 1997
- Communicated by: Theodore W. Gamelin
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 105-116
- MSC (1991): Primary 32M99; Secondary 32M05, 32H05
- DOI: https://doi.org/10.1090/S0002-9939-99-04492-5
- MathSciNet review: 1458872