Nonstandard characterization of convergence in law for $D[0,1]$-valued random variables
HTML articles powered by AMS MathViewer
- by D. Landers and L. Rogge
- Proc. Amer. Math. Soc. 127 (1999), 199-203
- DOI: https://doi.org/10.1090/S0002-9939-99-04504-9
- PDF | Request permission
Abstract:
We prove for random variables with values in the space $D[0,1]$ of cadlag functions — endowed with the supremum metric — that convergence in law is equivalent to nonstandard constructions of internal $S$-cadlag processes, which represent up to an infinitesimal error the limit process. It is not required that the limit process is concentrated on the space $C[0,1]$, so that the theory is applicable to a wider class of limit processes as e.g. to Poisson processes or Gaussian processes. If we consider in $D[0,1]$ the Skorokhod metric — instead of the supremum metric — we obtain a corresponding equivalence to constructions of internal processes with $S$-separated jumps. We apply these results to functional central limit theorems.References
- Robert M. Anderson, A nonstandard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), 15–46.
- Robert M. Anderson and Salim Rashid, A nonstandard characterization of weak convergence, Proc. Amer. Math. Soc. 69 (1978), no. 2, 327–332. MR 480925, DOI 10.1090/S0002-9939-1978-0480925-X
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- D. Landers and L. Rogge, Universal Loeb-measurability of sets and of the standard part map with applications, Trans. Amer. Math. Soc. 304 (1987), no. 1, 229–243. MR 906814, DOI 10.1090/S0002-9947-1987-0906814-1
- Dieter Landers and Lothar Rogge, Nichtstandard Analysis, Springer-Lehrbuch. [Springer Textbook], Springer-Verlag, Berlin, 1994 (German, with German summary). MR 1275833, DOI 10.1007/978-3-642-57915-8
- Dieter Landers and Lothar Rogge, Nonstandard characterization for a general invariance principle, Advances in analysis, probability and mathematical physics (Blaubeuren, 1992) Math. Appl., vol. 314, Kluwer Acad. Publ., Dordrecht, 1995, pp. 176–185. MR 1344707
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- Peter A. Loeb, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), no. 1-2, 154–187. MR 457757, DOI 10.1007/BF02756567
- Peter A. Loeb, A generalization of the Riesz-Herglotz theorem on representing measures, Proc. Amer. Math. Soc. 71 (1978), no. 1, 65–68. MR 588522, DOI 10.1090/S0002-9939-1978-0588522-2
- Peter A. Loeb, Weak limits of measures and the standard part map, Proc. Amer. Math. Soc. 77 (1979), no. 1, 128–135. MR 539645, DOI 10.1090/S0002-9939-1979-0539645-6
- Peter A. Loeb, A construction of representing measures for elliptic and parabolic differential equations, Math. Ann. 260 (1982), no. 1, 51–56. MR 664364, DOI 10.1007/BF01475753
- Gonzalo R. Mendieta, Two hyperfinite constructions of the Brownian bridge, Stochastic Anal. Appl. 7 (1989), no. 1, 75–88. MR 977251, DOI 10.1080/07362998908809168
- Andreas Stoll, A nonstandard construction of Lévy Brownian motion, Probab. Theory Relat. Fields 71 (1986), no. 3, 321–334. MR 824706, DOI 10.1007/BF01000208
- K. D. Stroyan and José Manuel Bayod, Foundations of infinitesimal stochastic analysis, Studies in Logic and the Foundations of Mathematics, vol. 119, North-Holland Publishing Co., Amsterdam, 1986. MR 849100
Bibliographic Information
- D. Landers
- Affiliation: Dieter Landers, Mathematisches Institut der Universität zu Köln, Weyertal 86, D–50931 Köln, Germany
- Email: landers@mi.uni-koeln.de
- L. Rogge
- Affiliation: Lothar Rogge, Fachbereich Mathematik der Gerhard-Mercator-Universität ghs Duisburg, Lotharstr. 65, D–47048 Duisburg, Germany
- Email: rogge@math.uni-duisburg.de
- Received by editor(s): February 3, 1997
- Received by editor(s) in revised form: May 8, 1997
- Communicated by: Stanley Sawyer
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 199-203
- MSC (1991): Primary 28E05; Secondary 60B12
- DOI: https://doi.org/10.1090/S0002-9939-99-04504-9
- MathSciNet review: 1458252