Smith equivalence of representations for finite perfect groups
HTML articles powered by AMS MathViewer
- by Erkki Laitinen and Krzysztof Pawałowski
- Proc. Amer. Math. Soc. 127 (1999), 297-307
- DOI: https://doi.org/10.1090/S0002-9939-99-04544-X
- PDF | Request permission
Abstract:
Using smooth one-fixed-point actions on spheres and a result due to Bob Oliver on the tangent representations at fixed points for smooth group actions on disks, we obtain a similar result for perfect group actions on spheres. For a finite group $G$, we compute a certain subgroup $IO’(G)$ of the representation ring $RO(G)$. This allows us to prove that a finite perfect group $G$ has a smooth $2$–proper action on a sphere with isolated fixed points at which the tangent representations of $G$ are mutually nonisomorphic if and only if $G$ contains two or more real conjugacy classes of elements not of prime power order. Moreover, by reducing group theoretical computations to number theory, for an integer $n \ge 1$ and primes $p, q$, we prove similar results for the group $G = A_{n}$, $\operatorname {SL} _{2}(\mathbb {F} _{p})$, or ${\operatorname {PSL}} _{2}(\mathbb {F} _{q})$. In particular, $G$ has Smith equivalent representations that are not isomorphic if and only if $n \ge 8$, $p \ge 5$, $q \ge 19$.References
- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491. MR 232406, DOI 10.2307/1970721
- Glen E. Bredon, Representations at fixed points of smooth actions of compact groups, Ann. of Math. (2) 89 (1969), 515–532. MR 246324, DOI 10.2307/1970649
- Sylvain E. Cappell and Julius L. Shaneson, Fixed points of periodic maps, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), no. 9, 5052–5054. MR 587279, DOI 10.1073/pnas.77.9.5052
- Sylvain E. Cappell and Julius L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), no. 1, 1–19. MR 666635, DOI 10.1007/BF01394267
- Sylvain E. Cappell and Julius L. Shaneson, Representations at fixed points, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 151–158. MR 780963, DOI 10.1090/conm/036/780963
- Karl Heinz Dovermann and Ted Petrie, Smith equivalence of representations for odd order cyclic groups, Topology 24 (1985), no. 3, 283–305. MR 815481, DOI 10.1016/0040-9383(85)90003-5
- Karl Heinz Dovermann and Dong Youp Suh, Smith equivalence for finite abelian groups, Pacific J. Math. 152 (1992), no. 1, 41–78. MR 1139972
- Karl Heinz Dovermann and Lawrence C. Washington, Relations between cyclotomic units and Smith equivalence of representations, Topology 28 (1989), no. 1, 81–89. MR 991100, DOI 10.1016/0040-9383(89)90033-5
- Karl Heinz Dovermann, Ted Petrie, and Reinhard Schultz, Transformation groups and fixed point data, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 159–189. MR 780964, DOI 10.1090/conm/036/780964
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Laitinen, E. and Morimoto, M., Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520.
- Erkki Laitinen, Masaharu Morimoto, and Krzysztof Pawałowski, Deleting-inserting theorem for smooth actions of finite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), no. 1, 10–38. MR 1314939, DOI 10.1007/BF02565998
- Mikiya Masuda and Ted Petrie, Lectures on transformation groups and Smith equivalence, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 191–242. MR 780965, DOI 10.1090/conm/036/780965
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- Bob Oliver, Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), no. 3, 583–615. MR 1396768, DOI 10.1016/0040-9383(95)00043-7
- Ted Petrie, $G$ surgery. I. A survey, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 197–233. MR 518416
- Ted Petrie, Pseudoequivalences of $G$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 169–210. MR 520505
- Ted Petrie, Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 1, 61–99. MR 704803, DOI 10.1017/S0305004100060928
- Ted Petrie and John Randall, Spherical isotropy representations, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 221–256. MR 823175
- Cristian U. Sanchez, Actions of groups of odd order on compact, orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445–448. MR 407871, DOI 10.1090/S0002-9939-1976-0407871-X
- R. Schultz (ed.), Problems submitted to the AMS summer research conference on group actions, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 513–568. MR 780979, DOI 10.1090/conm/036/780979
- Jean-Pierre Serre, Cours d’arithmétique, Collection SUP: “Le Mathématicien”, vol. 2, Presses Universitaires de France, Paris, 1970 (French). MR 0255476
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380
- P. A. Smith, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401–415. MR 125581, DOI 10.1090/S0002-9904-1960-10491-0
Bibliographic Information
- Erkki Laitinen
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University of Poznań, ul. Jana Matejki 48/49, PL–60–769 Poznań, Poland
- Email: kpa@math.amu.edu.pl
- Krzysztof Pawałowski
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University of Poznań, ul. Jana Matejki 48/49, PL–60–769 Poznań, Poland
- Received by editor(s): August 30, 1996
- Received by editor(s) in revised form: May 10, 1997
- Communicated by: Thomas Goodwillie
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 297-307
- MSC (1991): Primary 57S17, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-99-04544-X
- MathSciNet review: 1468195