Global bifurcation in generic systems of nonlinear Sturm-Liouville problems
HTML articles powered by AMS MathViewer
- by Bryan P. Rynne
- Proc. Amer. Math. Soc. 127 (1999), 155-165
- DOI: https://doi.org/10.1090/S0002-9939-99-04763-2
- PDF | Request permission
Abstract:
We consider the system of coupled nonlinear Sturm-Liouville boundary value problems \begin{gather*} L_1 u := -(p_1 u’)’ + q_1 u = \mu u + u f(\cdot ,u,v), \quad \text {in $(0,1)$},\\ a_{10} u(0) + b_{10} u’(0) = 0, \quad a_{11} u(1) + b_{11} u’(1) = 0,\\ L_2 v := -(p_2 v’)’ + q_2 v = \nu v + v g(\cdot ,u,v), \quad \text {in $(0,1)$},\\ a_{20} v(0) + b_{20} v’(0) = 0, \quad a_{21} v(1) + b_{21} v’(1) = 0, \end{gather*} where $\mu$, $\nu$ are real spectral parameters. It will be shown that if the functions $f$ and $g$ are ‘generic’ then for all integers $m, n \ge 0$, there are smooth 2-dimensional manifolds $\mathcal {S}_m^1$, $\mathcal {S}_n^2$, of ‘semi-trivial’ solutions of the system which bifurcate from the eigenvalues $\mu _m$, $\nu _n$, of $L_1$, $L_2$, respectively. Furthermore, there are smooth curves $\mathcal {B}_{mn}^1 \subset \mathcal {S}_m^1$, $\mathcal {B}_{mn}^2 \subset \mathcal {S}_n^2$, along which secondary bifurcations take place, giving rise to smooth, 2-dimensional manifolds of ‘non-trivial’ solutions. It is shown that there is a single such manifold, $\mathcal {N}_{mn}$, which ‘links’ the curves $\mathcal {B}_{mn}^1$, $\mathcal {B}_{mn}^2$. Nodal properties of solutions on $\mathcal {N}_{mn}$ and global properties of $\mathcal {N}_{mn}$ are also discussed.References
- J. C. Alexander and Stuart S. Antman, Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76 (1981), no. 4, 339–354. MR 628173, DOI 10.1007/BF00249970
- J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition systems, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 21–34. MR 751174, DOI 10.1017/S0308210500031802
- Robert Stephen Cantrell, Global higher bifurcations in coupled systems of nonlinear eigenvalue problems, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), no. 1-2, 113–120. MR 899945, DOI 10.1017/S0308210500018242
- Robert Stephen Cantrell, Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Proc. Amer. Math. Soc. 107 (1989), no. 3, 633–644. MR 975633, DOI 10.1090/S0002-9939-1989-0975633-X
- Robert Stephen Cantrell, Parameter ranges for the existence of solutions whose state components have specified nodal structure in coupled multiparameter systems of nonlinear Sturm-Liouville boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 3-4, 347–365. MR 1135980, DOI 10.1017/S030821050001489X
- Robert Stephen Cantrell and Chris Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion, Houston J. Math. 13 (1987), no. 3, 337–352. MR 916141
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 1069–1076. MR 348567, DOI 10.1512/iumj.1974.23.23087
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- P. Brunovsky and P. Polacik, The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension, J. Diff. Equns. 135 (1997), 129-181.
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- Bryan P. Rynne, Genericity of hyperbolicity and saddle-node bifurcations in reaction-diffusion equations depending on a parameter, Z. Angew. Math. Phys. 47 (1996), no. 5, 730–739 (English, with English and German summaries). MR 1420852, DOI 10.1007/BF00915272
- Angus Ellis Taylor and David C. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 564653
- J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (1979), no. 3, 293–319. MR 522714, DOI 10.1080/03605307908820096
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
- Eberhard Zeidler, Nonlinear functional analysis and its applications. IV, Springer-Verlag, New York, 1988. Applications to mathematical physics; Translated from the German and with a preface by Juergen Quandt. MR 932255, DOI 10.1007/978-1-4612-4566-7
Bibliographic Information
- Bryan P. Rynne
- Affiliation: Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland
- Email: bryan@ma.hw.ac.uk
- Received by editor(s): May 2, 1997
- Communicated by: Hal L. Smith
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 155-165
- MSC (1991): Primary 34B15; Secondary 34B24, 58E07
- DOI: https://doi.org/10.1090/S0002-9939-99-04763-2
- MathSciNet review: 1487336