A universal functional equation
HTML articles powered by AMS MathViewer
- by Carsten Elsner
- Proc. Amer. Math. Soc. 127 (1999), 139-143
- DOI: https://doi.org/10.1090/S0002-9939-99-05003-0
- PDF | Request permission
Abstract:
It is shown that the S-chains solving Rubel’s universal fourth-order differential equation also satisfy a third-order functional equation.References
- Michael Boshernitzan, Universal formulae and universal differential equations, Ann. of Math. (2) 124 (1986), no. 2, 273–291. MR 855296, DOI 10.2307/1971279
- Carsten Elsner, On the approximation of continuous functions by $C^\infty$-solutions of third-order algebraic differential equations, Math. Nachr. 157 (1992), 235–241. MR 1233061, DOI 10.1002/mana.19921570119
- Lee A. Rubel, A universal differential equation, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 3, 345–349. MR 609048, DOI 10.1090/S0273-0979-1981-14910-7
Bibliographic Information
- Carsten Elsner
- Affiliation: Department of Mathematics, University of Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Email: elsner@math.uni-hannover.de
- Received by editor(s): May 2, 1997
- Communicated by: Hal L. Smith
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 139-143
- MSC (1991): Primary 34K05, 34A34
- DOI: https://doi.org/10.1090/S0002-9939-99-05003-0
- MathSciNet review: 1622809