Generalizing the Paley-Wiener perturbation theory for Banach spaces
Authors:
Peter G. Casazza and Nigel J. Kalton
Journal:
Proc. Amer. Math. Soc. 127 (1999), 519-527
MSC (1991):
Primary 46B03, 46B20
DOI:
https://doi.org/10.1090/S0002-9939-99-04536-0
MathSciNet review:
1468186
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We extend the Paley-Wiener pertubation theory to linear operators mapping a subspace of one Banach space into another Banach space.
- 1. Maynard G. Arsove, The Paley-Wiener theorem in metric linear spaces, Pacific J. Math. 10 (1960), 365–379. MR 125429
- 2. Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), no. 3, 439–445. MR 699410, https://doi.org/10.1090/S0002-9939-1983-0699410-7
- 3. R.P. Boas, Jr., Expansions of analytic functions, Transactions of the American Mathematical Society 48 (1940), 467-487. MR 2:80e
- 4. Mahlon M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), 655–658. MR 137987, https://doi.org/10.1090/S0002-9939-1962-0137987-7
- 5. I. C. Gohberg and M. G. Kreĭn, Fundamental aspects of defect numbers, root numbers and indexes of linear operators, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 2(74), 43–118 (Russian). MR 0096978
- 6. S.H. Hilding, Note on completeness theorems of Paley-Wiener type, Annals of Math 49 (1948), 953-955. MR 10:198a
- 7. N. J. Kalton, N. T. Peck, and James W. Roberts, An 𝐹-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR 808777
- 8. M.G. Krein, M.A. Krasnoselskii, and D.P. Milman, On the defect numbers of linear operators in a Banach space and on some geometrical questions (Russian), Sb. Tr. Inst. Mat. Akad. Nauk Ukr. SSR 11 (1948), 97-112.
- 9. B. Sz. Nagy, Expansion theorems of Paley-Wiener type, Duke Math. Journal 14 (1947), 975-978.
- 10. Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142
- 11. H. Pollard, Completeness theorems of Paley-Wiener type, Annals of Math 45 (1944), 738-739. MR 6:127h
- 12. James R. Retherford, Basic sequences and the Paley-Wiener criterion, Pacific J. Math. 14 (1964), 1019–1027. MR 170195
- 13. C. Von Neumann, Untersuchungen uber das logarithmische und Newtonsche Potential, Teubner, Leipzig (1877).
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B03, 46B20
Retrieve articles in all journals with MSC (1991): 46B03, 46B20
Additional Information
Peter G. Casazza
Affiliation:
Department of Mathematics, The University of Missouri, Columbia, Missouri 65211
Email:
pete@casazza.math.missouri.edu
Nigel J. Kalton
Affiliation:
Department of Mathematics, The University of Missouri, Columbia, Missouri 65211
Email:
nigel@math.missouri.edu
DOI:
https://doi.org/10.1090/S0002-9939-99-04536-0
Keywords:
Paley-Wiener perturbation theory,
spectrum,
approximate fixed points
Received by editor(s):
March 4, 1997
Received by editor(s) in revised form:
June 1, 1997
Additional Notes:
The first author was supported by NSF-DMS 9201357, the Danish Natural Science Research Council, grant no. 9401598, and grants from the University of Missouri Research Board, and the University of Missouri Research Council. The second author was supported by NSF-DMS 95000125.
Communicated by:
Dale Alspach
Article copyright:
© Copyright 1999
American Mathematical Society