EXTENSIONS OF PERFECT GO-SPACES
AND σ-DISCRETE DENSE SETS

WEI-XUE SHI

(Communicated by Alan Dow)

Abstract. In this paper, we prove that if a perfect GO-space X has a σ-discrete dense set, then X has a perfect linearly ordered extension. This answers a problem raised by H. R. Bennett, D. J. Lutzer and S. Purisch. And the result is also a partial answer to an old problem posed by H. R. Bennett and D. J. Lutzer.

1. Introduction

A GO-space (generalized ordered space) is a triple $\langle X, \tau, \leq \rangle$, where $\langle X, \leq \rangle$ is a linearly ordered set, τ a topology on X which is T_1 and has the base consisting of open sets which are order-convex. If we denote the usual interval topology on X by λ, then $\langle X, \lambda, \leq \rangle$ is called a LOTS (linearly ordered topological space). We say that $\langle X, \lambda, \leq \rangle$ is an underlying LOTS of the GO-space $\langle X, \tau, \leq \rangle$. If a GO-space $\langle X, \tau, \leq \rangle$ can be topologically embedded in a LOTS $\langle Y, \lambda, \prec \rangle$, then the LOTS $\langle Y, \lambda, \prec \rangle$ is called an orderable extension of the GO-space $\langle X, \tau, \leq \rangle$ and if $\leq = \prec | X$, then the LOTS $\langle Y, \lambda, \prec \rangle$ is called a linearly ordered extension of the GO-space $\langle X, \tau, \leq \rangle$.

It is an interesting question whether a topological property on a GO-space can be reflected on some of its orderable extensions. It is known that for separability, metrizability and paracompactness the answers to this question are affirmative (cf. [1]). But the following question posed by H. R. Bennett and D. J. Lutzer remains open.

Problem 1 ([1]). Is it true that any perfect GO-space has a perfect orderable extension?

In [6] and [7] the author with T. Miwa and Y.-Z. Gao has proved that there exists a perfect GO-space which cannot be densely embedded in any perfect LOTS. On the other hand any perfect GO-space with the underlying LOTS satisfying local perfectness can be embedded in a perfect LOTS. Recently H. R. Bennett, D. J. Lutzer and S. Purisch studied dense subspaces of GO-spaces; they posed the following question.

Problem 2 ([2]). Is it true that a GO-space with a σ-discrete dense subset can be embedded in a LOTS with a σ-discrete dense subset?
The aim of the present paper is to give a solution to Problem 2 in the affirmative and to point out relations between Problem 1 and an older set theoretic problem (see Section 3).

For a GO-space \(\langle X, \tau, \leq \rangle \), let
\[
\begin{align*}
\lambda &\quad \text{be the interval topology on } \langle X, \leq \rangle, \\
I &= \{ x \in X \mid \{ x \} \in \tau - \lambda \}, \\
R &= \{ x \in X - I \mid [x, \to) \in \tau - \lambda \}, \\
L &= \{ x \in X - I \mid (\to, x] \in \tau - \lambda \}, \\
E &= X - (R \cup L \cup I).
\end{align*}
\]

It is well-known that a GO-space topology on \(\langle X, \leq \rangle \) can be determined by the sets \(I, R, L, E \). So we denote the GO-space \(\langle X, \tau, \leq \rangle \) by \(GO_X(R, E, I, L) \) and write \(X = GO(R, E, I, L) \), simply saying \(X \) is a GO-space. By ‘discrete’ we always mean ‘closed discrete’.

2. Main results

To prove our results, we state a known result proved by the author.

Theorem 1 ([5]). A perfect GO-space \(X = GO(R, E, I, L) \) has a perfect linearly ordered extension if and only if there exists a \(\sigma \)-discrete subset \(F \) of \(X \) such that \(X' = GO_X(\emptyset, X - F, F, \emptyset) \) is perfect.

Lemma 2. Let \(X = GO(R, E, I, L) \) be a GO-space and \(Y \) the underlying LOTS of \(X \). If \(D \) is a discrete subset of \(X \), then there exists a discrete subset \(D' \supseteq D \) of \(X \) such that \(D' \) is closed in \(Y \).

Proof. Let \(D' = cl_Y D \). It is sufficient to prove that \(D' \) is discrete in \(X \).

For \(x \in X \), if \(x \in I \), \(\{ x \} \) is an open neighborhood of \(x \) in \(X \) which intersects \(D \) in at most one point.

If \(x \in R \), there exists \(y > x \) such that \([x, y] \cap D = \{ x \} \) or \([x, y] \cap D = \emptyset \) since \(D \) is discrete in \(X \). If \((x, y) \cap (D' - D) \neq \emptyset \), we would have \((x, y) \cap D \neq \emptyset \). So \((x, y) \cap D' = \{ x \} \) or \((x, y) \cap D' = \emptyset \). Similarly if \(x \in L \), we may choose a \(y < x \) such that \((y, x] \cap D' = \{ x \} \) or \((y, x] \cap D' = \emptyset \).

If \(x \in E \), there exist \(y_0, y_1 \) with \(y_0 < x < y_1 \) such that \((y_0, y_1) \cap D = \{ x \} \) or \((y_0, y_1) \cap D = \emptyset \). If \((y_0, y_1) \cap (D' - D) \neq \emptyset \), then \(|(y_0, y_1) \cap D| > 1 \). Therefore \((y_0, y_1) \cap D' = \{ x \} \) or \((y_0, y_1) \cap D' = \emptyset \). Hence \(D' \) is discrete in \(X \) and closed in \(Y \).

Lemma 3 ([8]). If a GO-space \(X \) has a \(\sigma \)-discrete dense subset, then \(X \) is perfect.

Theorem 4. Let \(X = GO(R, E, I, L) \) be a perfect GO-space. If \(X \) has a \(\sigma \)-discrete dense subset \(F \), then \(X \) has a perfect linearly ordered extension.

Proof. Let \(Y \) be the underlying LOTS of \(X \). Since \(F \) is \(\sigma \)-discrete in \(X \), \(F = \bigcup \{ F_n \mid n \in \omega_0 \} \), where \(F_n \) is discrete in \(X \) for each \(n \in \omega_0 \). By Lemma 2, for each \(n \in \omega_0 \), we may choose a discrete subset \(F'_n \) of \(X \) such that \(F'_n \supseteq F_n \) and \(F'_n \) is closed in \(Y \).

Put \(F' = \bigcup \{ F'_n \mid n \in \omega_0 \} \). Then \(F' \) is an \(F_n \)-set in \(Y \) and a \(\sigma \)-discrete subset of \(X \). Consider the GO-space \(X' = GO_X(\emptyset, X - F', F', \emptyset) \). We prove that \(X' \) is perfect. It is obvious that \(F'_n \) is closed in \(X' \) for each \(n \in \omega_0 \). So \(F' \) is \(\sigma \)-discrete in \(X' \). Assume that \(x \in X - F' \) and \((y_0, y_1) \) is a neighborhood of \(x \) in \(X' \). Since \((y_0, y_1) \) is also open in \(X \) and \(F \subset F' \) is dense in \(X \), \((y_0, y_1) \cap F' \neq \emptyset \). Thus \(F' \) is a
σ-discrete dense subset of X'. It follows from Lemma 3 that X' is perfect. Hence by Theorem 1, X has a perfect linearly ordered extension.

Theorem 5. If a GO-space $X = GO(R, E, I, L)$ has a σ-discrete dense subset, then X has a perfect linearly extension with a σ-discrete dense subset.

Proof. By the proof of Theorem 4, it is known that if the GO-space X has a σ-discrete dense subset, then X satisfies the conditions of Theorem 1. With R, L and I as in Section 1, by the proof of Theorem 1 (see [5]), there exists a σ-discrete set F of X such that $I \subset F \subset R \cup L \cup I$, and the perfect linearly ordered extension of X constructed in [5] has the form

$$P(X) = (X \times \{0\}) \cup ((R - F) \times \{-1\}) \cup ((L - F) \times \{1\})$$

$$\cup (I_0 \times (-1,1)) \cup ((I_- \cup (F \cap R)) \times (-1,0)) \cup ((I_+ \cup (F \cap L)) \times (0,1))$$

where

$$I_- = \{x \in I \mid \text{there is a } y \in X \text{ such that } x < y \text{ and } (x,y) = \emptyset\},$$

$$I_+ = \{x \in I \mid \text{there is a } y \in X \text{ such that } y < x \text{ and } (y,x) = \emptyset\},$$

$$I_0 = I - (I_- \cup I_+).$$

Since

$$O = \{\{x\} \times (-1,1) \mid x \in I_0\}$$

$$\cup \{\{x\} \times (-1,0) \mid x \in I_- \cup (F \cap R)\} \cup \{\{x\} \times (0,1) \mid x \in I_+ \cup (F \cap L)\}$$

is a σ-discrete collection in $P(X)$ and every element of the collection has a countable dense subset, there exists a σ-discrete subset of $P(X)$ which is dense in each element of O. For a point $\langle x, y \rangle \in P(X)$, if $x \notin F$, then the intersection of any neighborhood of $\langle x, y \rangle$ with $X \times \{0\}$ contains an interval of $X \times \{0\}$. It is easy to check that the σ-discrete subset of $X \times \{0\}$ is also σ-discrete in $P(X)$. Thus $P(X)$ has a σ-discrete dense subset.

Remark

By Theorem 4, we know that to find a counterexample to Problem 1, one must find a perfect GO-space which has no σ-discrete dense subset. But this is related to an old problem which is still open.

Problem 3 ([1]). Is there an example of a perfect GO-space in ZFC which does not have a σ-discrete dense subset?

So if the answer to Problem 3 is ‘no’, then there exists no counterexample in ZFC to Problem 1. On the other hand, it is well-known that if we assume that there exists a Souslin line S, the existence of which is independent of ZFC, then S is a perfect LOTS which does not have a σ-discrete dense subset. However even under the assumption that Souslin line exists, any perfect GO-space with the Souslin line as the underlying LOTS does not serve as a counterexample to Problem 1 because by the result in [7], we know that any perfect GO-space with a perfect underlying LOTS has a perfect linearly extension.
REFERENCES

7. , *Any perfect GO-space with the underlying LOTS satisfying local perfectness can embed in a perfect LOTS*, Topology Appl. 74(1996), 17–24. CMP 97:06
8. J. van Wouwe, GO-spaces and generalizations of metrizability, MC Tract no. 104, (Mathematical Center, Amsterdam, 1979). MR 80m:54046

DEPARTMENT OF MATHEMATICS, CHANGCHUN TEACHERS COLLEGE, CHANGCHUN 130032, CHINA
Current address: Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
E-mail address: shi@abel.math.tsukuba.ac.jp