ON SMOOTHNESS OF CARRYING SIMPLICES

JANUSZ MIERCZYŃSKI

(Communicated by Hal L. Smith)

Abstract. We consider dissipative strongly competitive systems \(\dot{x}_i = x_i f_i(x) \) of ordinary differential equations. It is known that for a wide class of such systems there exists an invariant attracting hypersurface \(\Sigma \), called the carrying simplex. In this note we give an amenable condition for \(\Sigma \) to be a \(C^1 \) submanifold-with-corners. We also provide conditions, based on a recent work of M. Benaïm (On invariant hypersurfaces of strongly monotone maps, J. Differential Equations 136 (1997), 302–319), guaranteeing that \(\Sigma \) is of class \(C^k+1 \).

1. Introduction

We consider systems of ordinary differential equations (ODE’s) of class (at least) \(C^1 \)

\[\dot{x}_i = x_i f_i(x) \]

on the nonnegative orthant \(C := \{ x \in \mathbb{R}^n : x_i \geq 0 \text{ for } 1 \leq i \leq n \} \), \(n \geq 3 \).

We write \(F_i(x) = x_i f_i(x) \), \(F = (F_1, \ldots, F_n) \). The symbol \(DF = [\partial F_i/\partial x_j]_{i,j=1}^n \) stands for the derivative matrix of the vector field \(F \). The local flow generated by (E) on \(C \) will be denoted by \(\phi = \{ \phi_t \} \). A subset \(B \subset C \) is invariant [resp. forward invariant] if \(\phi_t x \in B \) for all \((t, x) \in \mathbb{R} \times B \) [resp. for all \((t, x) \in [0, \infty) \times B \)] for which \(\phi_t x \) is defined. For \(x \in C \), \(B \subset C \) the symbols \(\omega(x) \), \(\alpha(x) \), \(\omega(B) \), \(\alpha(B) \) have their usual meanings (see e.g. Hale [3]). A point \(x \in C \) is a rest point if \(\phi_t x = x \) for each \(t \in \mathbb{R} \) (alternatively, if \(F(x) = 0 \)). An invariant subset \(B \) of a compact invariant set \(S \) is called an attractor (resp. a repeller) relative to \(S \) if there is a relative neighborhood \(U \) of \(B \) in \(S \) such that \(\omega(U) = B \) (resp. \(\alpha(U) = B \)). For an attractor \(B \) relative to \(S \), by the repeller complementary to \(B \) we understand the set \(\{ x \in S : \omega(x) \cap B = \emptyset \} \). The attractor complementary to a repeller \(R \) is defined in an analogous way.

System (E) is dissipative if there is a compact set \(B \subset C \) such that for each bounded \(D \subset C \) its \(\omega \)-limit set \(\omega(D) \) is a nonempty subset of \(B \). By standard results on global attractors (see [3]), for a dissipative system (E) there exists a compact invariant set \(\Gamma \subset C \) (the global attractor for (E)) such that \(\omega(D) \subset \Gamma \) for each bounded \(D \subset C \). Evidently, \(0 \in \Gamma \).

Received by the editors June 2, 1997.

1991 Mathematics Subject Classification. Primary 34C30, 34C35; Secondary 58F12, 92D40.

The author’s research was supported by KBN grant 2 P03A 076 08 (1995–97).
For $I \subset \{1, \ldots, n\}$ denote
\[
C_I := \{x \in C : x_i = 0 \text{ for } i \in I\},
\]
\[
C_I^\circ := \{x \in C_I : x_j > 0 \text{ for } j \notin I\},
\]
\[
\partial C_I := C_I \backslash C_I^\circ.
\]

From the form of (E) it follows readily that any C_I, as well as ∂C_I and C_I°, is
invariant. We denote by $(E)_I$ the restriction of system (E) to C_I. Instead of C_0°, ∂C_0, we write $C_0^\circ, \partial C$. I' means $\{1, \ldots, n\} \backslash I$.

If system (E) is dissipative, so are all of its subsystems (E)$_I$. For each $I \subset \{1, \ldots, n\}$, the global attractor Γ_I for (E)$_I$ equals $\Gamma \cap C_I$.

System (E) is called strongly competitive if $(\partial f_i/\partial x_j)(x) < 0$ for each $1 \leq i, j \leq n$, $i \neq j$, $x \in C$. A strongly competitive system is called totally competitive if $(\partial f_i/\partial x_j)(x) < 0$ for $1 \leq i \leq n$, $x \in C$. Such systems describe a community of n interacting species where the growth of each species inhibits the growth of any other.

Throughout the rest of the paper the standing assumption will be:

(E) is a C^1 dissipative strongly competitive system of ODE’s satisfying the following:

1. $\{0\}$ is a repeller relative to Γ.
2. At each rest point $x \in C \backslash \{0\}$ one has $(\partial f_i/\partial x_i)(x) < 0$ for $1 \leq i \leq n$.

The following important result was established by M. W. Hirsch ([4]).

Proposition 1.1. The attractor $\Sigma \subset \Gamma$ complementary to the repeller $\{0\}$ is homeomorphic via radial projection to the standard $(n - 1)$-simplex $\Delta := \{x \in C : x_1 + \cdots + x_n = 1\}$. Moreover, the global attractor Γ equals the convex hull of $\Sigma \cup \{0\}$.

Following M. L. Zeeman [15], the invariant compact set Σ is referred to as the carrying simplex for (E). In the ecological interpretation, the carrying simplex can be thought of as expressing the balance between the growth of small populations ($\{0\}$ is a repeller) and the competition of large populations (dissipativity).

M. W. Hirsch in [4] asked about sufficient conditions for the carrying simplex Σ to be of class C^1. The time reverse flow $\{\phi_{-t}\}_{t \geq 0}$ restricted to the invariant set C° is strongly monotone and its derivative flow is strongly positive (for these terms see H. L. Smith’s monograph [12]). Therefore, when (E) possesses a repeller $R \subset \Sigma \cap C^\circ$ relative to Σ we can utilize a powerful recent result of I. Tereščák [13] on nonmonotone manifolds to conclude that the repulsion basin $B(R) := \{x \in \Sigma^\circ : \alpha(x) \subset R\}$ is a C^1 hypersurface. However, even in that case Tereščák’s theorem does not apply to the whole of Σ, for the time reverse flow fails to be strongly monotone on the boundary ∂C. Moreover, if we assume that (E) is permanent (a natural assumption from the applied viewpoint) then there is an attractor A having the whole C° as its attraction basin, hence its repulsion basin (relative to Σ) equals A. In his paper [10] the present author gave a fairly weak condition implying the C^1 smoothness of Σ. It was done, however, at the expense of making use (for $n \geq 5$) of Pesin’s theory of invariant measurable families of embedded manifolds, which compels one to assume that f has Hölder continuous derivatives.

In this note we show that a well-known, robust, and readily testable condition (see (A)) is enough to conclude that Σ is C^1. Because our proofs exploit Oseledets’ theory of Lyapunov exponents, it suffices to assume f is C^1 to get C^1 smoothness
of \(\Sigma \). Next, conditions are given, based on recent results of M. Benaïm [1], for the carrying simplex to possess higher order smoothness.

I would like to thank Michel Benaïm for sending me a preprint of [1].

2. Statement of main results

For \(I \subset \{1,\ldots,n\} \) put

\[
\Sigma_I := C_I \cap \Sigma, \quad \Sigma_I^\circ := C_I^\circ \cap \Sigma, \quad \partial \Sigma_I := \partial C_I \cap \Sigma.
\]

We will call \(\Sigma_I \) a \(k \)-dimensional face of \(\Sigma \), where \(k = n - 1 - \text{card} \, I \). Evidently all \(\Sigma_I \), as well as \(\Sigma_I^\circ \) and \(\partial \Sigma_I \), are invariant. For \(I \subset \{1,\ldots,n\} \), the face \(\Sigma_I \) is the carrying simplex for subsystem \((E)_I \). The 0-dimensional face \(\Sigma^0 \) consists of a single rest point \(x^{(i)} = (0, \ldots, 0, x^{(i)}_i, 0, \ldots, 0) \) with \(x^{(i)}_i > 0 \) (called the \(i \)-th axial rest point).

Let \(V = \{ v = (v_1, \ldots, v_n) : v_i \in \mathbb{R} \} \) stand for the vector space of all free \(n \)-dimensional vectors (in particular, we write the tangent bundle of the orthant \(C \) as \(TC = C \times V \)). Depending on the context, \(||\cdot|| \) may mean the Euclidean norm of a vector, or the operator norm of a matrix, associated with the Euclidean norm. For \(I \subset \{1,\ldots,n\} \), we denote

\[
V_I := \{ v \in V : v_i = 0 \text{ for } i \in I \}.
\]

For any two points \(x, y \in C_I \), we write \(x \leq_I y \) if \(x_i \leq y_i \) for all \(i \in I' \), and \(x <_I y \) if \(x_i \leq y_i \) and \(x \neq y \). Moreover, \(x \ll_I y \) if \(x_i < y_i \) for all \(i \in I' \). For \(I = \emptyset \) we write simply \(\leq, <, \ll \). The reversed symbols are used in the obvious way. As each \((C_I, \leq_I) \) is a lattice, we can define, for \(I \subset \{1,\ldots,n\} \) with card \(I \leq n - 1 \)

\[
x^{[I]} := \bigvee_{i \in I'} x^{(i)},
\]

where it is easy to see that \(x^{[I]} \ll_I x^{[I']} \) for \(I \subsetneq J \).

The following result probably belongs to the folklore in the theory of competitive systems, but I have not been able to locate its proof.

Lemma 2.1. For each \(I \subset \{1,\ldots,n\} \) with \(1 \leq \text{card} \, I \leq n - 2 \) we have \(y <_I x^{[I]} \) for all \(y \in \Sigma_I \).

Proof. Suppose to the contrary that there is \(y \in \Sigma_I \) not in the \(<_I \) relation to \(x^{[I]} \). Assume first that \(y = x^{[I]} \), that is, \(x^{[I]} \in \Sigma_I \). For \(i \in I' \), \(j \in I' \), \(i \neq j \), we have \(x^{[I]}_j > x^{(i)}_j = 0 \). As \(f_i(x^{(i)}) = 0 \), it follows by strong competitiveness that \(f_i(x^{[I]}) < 0 \) for \(i \in I' \). Therefore we have \(F_i(x^{[I]}) = x^{[I]}_i f_i(x^{[I]}) < 0 \) for all \(i \in I' \). Consequently, \(\phi_t x^{[I]} \ll_I x^{[I]} \) for \(t > 0 \) sufficiently small. But \(\Sigma_I \) is invariant, so \(\phi_t x^{[I]} \in \Sigma_I \) for all \(t > 0 \). We have thus obtained two points in \(\Sigma_I \) related by \(\ll_I \), which contradicts Lemma 2.5 in Hirsch [4]. Assume that \(y \in \Sigma_I \) is not in the \(\leq_I \) relation to \(x^{[I]} \). Take an index \(k \) for which \(y_k > x^{[I]}_k \). Let \(J \subset \{1,\ldots,n\} \) stand for the set of those indices \(j \) for which \(y_j = 0 \). Evidently \(k \in J' \) and \(I \subset J \). We have \(y \in \Sigma_J \cap C_J \cap C_J^\circ = \Sigma \cap C_J^\circ = \Sigma_J^\circ \). As a consequence, \(y_j > x^{(k)}_j = 0 \) for \(j \in J' \), \(j \neq k \), and \(y_k > x^{[I]}_k = x^{(k)}_k \) (since \(k \not\in I \)). But this means that \(y \not\ll_J x^{(k)} \). As both these points are in \(\Sigma_J \), this again is in contradiction to Lemma 2.5 in [4].

We say \((E) \) satisfies hypothesis \((A) \) if

For each \(1 \leq i \leq n \) one has \(f_i(x^{[I]}) \geq 0 \).
In light of the strong competitiveness, (A) can be equivalently formulated as:

\[\text{For each } I \subset \{1, \ldots, n\} \text{ with } 1 \leq \text{card } I \leq n-1 \text{ one has } f_i(x^{[I]}) \geq 0 \text{ for } i \in I. \]

Hypothesis (A) is well known in the literature on mathematical ecology. Consider the Lotka–Volterra competitive system

\[\dot{x}_i = x_i (b_i - \sum_{j=1}^n a_{ij} x_j), \]

with \(b_i > 0, a_{ij} > 0 \). For (2.1) the \(i \)-th axial rest point is given by \(x^{(i)}_i = b_i/a_{ii} \). It is easy to see that (A) is now equivalent to

\[b_i \geq \sum_{j=1, j \neq i}^n a_{ij} \frac{b_j}{a_{jj}} \text{ for each } 1 \leq i \leq n. \]

We are now in a position to state our main result.

Theorem A. Assume that (E) satisfies (A). Then the carrying simplex \(\Sigma \) is a \(C^1 \) submanifold-with-corners neatly embedded in \(C \).

For submanifolds-with-corners their neat embeddings, see [10].

We now state some consequences of hypothesis (A). System (E) is called permanent if there is \(\epsilon > 0 \) such that \(\liminf_{t \to -\infty} \rho(\phi_t x, \partial C_i) \geq \epsilon \) for each \(x \in C_i^\circ \), where \(\rho \) stands for the Euclidean distance between a point and a set.

Proposition 2.2. If (A) is satisfied, then each of the subsystems (E)_I is permanent.

Proof. In order not to encumber our presentation with too many subscripts, we prove the assertion for \(I = 0 \), that is, for system (E) only. For each \(i, 1 \leq i \leq n \), we have as a result of strong competitiveness and Lemma 2.1 that \(f_i(x) > 0 \) for all \(x \in \Sigma' \). Now take a neighborhood \(U_i \) of \(\Sigma'_i \) in \(C \) of the form

\[U_i = \{ (x_1, \ldots, x_n) : 0 \leq x_i < \epsilon, (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in \tilde{U}_i \}, \]

where \(\epsilon_i > 0 \) and a relative neighborhood \(\tilde{U}_i \) of \(\Sigma'_i \) in \(C_i' \) are so small that \(f_i(x) > 0 \) for all \(x \in U_i \). As \(\Gamma \) is the global attractor for (E) and \(\Sigma \) is the attractor relative to \(\Gamma \) complementary to \(\{0\} \), there exists a forward invariant neighborhood \(U \) of \(\Sigma \) in \(C \) with the property that \(\phi_t x \in U \) for \(x \in C \setminus \{0\} \) and sufficiently large \(t \). Also, \(U \) can be taken so small that all the sets \(\{ x \in U : x_i < \epsilon \} \) are contained in \(U_i \). Now observe that for \(t \) so large that \(\phi_t x \) belongs to \(U \) one has

\[\frac{d(\phi_t x)_i}{dt} = F_i(\phi_t x) = x_i f_i(\phi_t x) > 0 \]

as long as \((\phi_t x)_i < \epsilon \). From this it readily follows that \(\liminf_{t \to -\infty} \rho(\phi_t x, \Sigma'_i) \geq \epsilon \) for any \(x \in C^\circ \).

In view of results on attractors contained in Hale [3] we have the following.

Lemma 2.3. Under the assumptions of Proposition 2.2, for each \(I \subset \{1, \ldots, n\} \) the invariant compact set \(\partial \Sigma_I \) is a repeller relative to \(\Sigma_I \).

For \(I \subset \{1, \ldots, n\} \) denote by \(A_I \) the attractor (relative to \(\Sigma_I \)) complementary to \(\partial \Sigma_I \). As \(A_I \) can be viewed as the global attractor for the semiflow \(\{\phi_t\}_{t \geq 0} \) restricted to the connected metric space \(\Sigma^g_I \), a result of Gobbino and Sardella (Thm. 3.1 in [2]) yields that \(A_I \) is connected.
The ecological interpretation of the property described in Proposition 2.2 is as follows. In each subcommunity none of the species goes extinct, and invasion of a proper subcommunity by others causes the populations of the previously present species to shrink due to the larger amount of competition.

Before formulating sufficient conditions for Σ to be of class C^{k+1} we need to introduce some notation (we follow Bena"ım’s paper [1]). For $x \in A_I$, $I \subset \{1, \ldots, n\}$ with $\text{card } I \leq n - 2$, we denote by $\lambda(x)$ the largest eigenvalue of the symmetrization of the matrix $(-DF^I(x))$, where $DF^I := [\partial F_i/\partial x_j]\mid_{(i,j) \in I \times I}$. Further, $d(x)$ stands for the square root of

$$\min_{i,j \not\in I} \frac{\partial F_i}{\partial x_j}(x) \frac{\partial F_j}{\partial x_i}(x).$$

Put $\lambda_I := \sup\{\lambda(x) : x \in A_I\}$ and $d_I := \inf\{d(x) : x \in A_I\}$.

We say that (E) satisfying (A) fulfills (C) if for each I with $0 \leq \text{card } I \leq n - 2$ any one of the conditions (C1) or (C2) holds:

(C1) $k \sup\{\|DF^I(x)\| : x \in A_I\} < 2(k + 1)d_I$,

(C2) $k\lambda_I < 2(k + 1)d_I$.

Theorem B. Assume that a C^{k+1} system (E) satisfies (A) and (C). Then the carrying simplex Σ is a C^{k+1} submanifold-with-corners.

3. **Proof of Theorem A**

Let S be the $(n - 1)$-dimensional sphere $\{v \in V : \|v\| = 1\}$. For a vector subspace W of V and $0 \leq k \leq \dim W$, the symbol G_kW denotes the compact metrizable space of all k-dimensional vector subspaces of W, endowed with the standard topology: for any two $Z_1, Z_2 \in G_kW$, their distance is defined as the Hausdorff distance between $Z_1 \cap S$ and $Z_2 \cap S$.

The linearization of (E) generates on TC a linear skew-product (local) flow $(\phi_t x, D\phi_t(x)v)$, where $D\phi_t(x)v$ is the value at time t_0 of the solution of the variational equation $\xi = DF(\phi_x)x\xi$ with initial condition $\xi(0) = v_0$.

For a linear subset C of the product bundle $B \times W$, where $B \subset \Sigma$ and W is a vector subspace of V, we will denote by C_x the set of all those $v \in W$ such that $(x, v) \in C$ (in other words, $\{x\} \times C_x$ is the fiber of C over x). A linear subset C of $B \times W$ is called invariant if for each $(x, v) \in C$ and each $t \in \mathbb{R}$ one has $(\phi_t x, D\phi_t(x)v) \in C$.

Denote the set of all ergodic measures supported on a compact invariant $B \subset \Sigma$ by $\mathbf{M}_{\text{erg}}(B)$. The multiplicative ergodic theorem of Oseledets (see e.g. Mañé [8]) assures us that if $B \times W$ is an invariant bundle, then for each $m \in \mathbf{M}_{\text{erg}}(B)$ there exist an invariant m-measurable set $B_{\text{reg}} \subset B$ (the set of regular points), a collection C_1, \ldots, C_l of invariant linear subsets given by m-measurable maps $B_{\text{reg}} \ni x \mapsto (C_k)_x \in G_{d_k}W$ (the Oseledets decomposition) and a collection $\Lambda_1 < \cdots < \Lambda_l$ of reals (Lyapunov exponents) such that

1. $W = \bigoplus_{k=1}^l (C_k)_x$ for $x \in B_{\text{reg}}$,
2. $$\lim_{t \to \pm \infty} \frac{\log \|D\phi_t(x)v\|}{t} = \Lambda_k$$

for $1 \leq k \leq l$, $x \in B_{\text{reg}}$ and $v \in (C_k)_x$.
Lemma 3.1. For each $m \in \mathbf{M}_{\text{erg}}(\Sigma)$ there is $I = I(m) \subset \{1, \ldots, n\}$ such that the support $\supp m$ of m is contained in A_I.

Proof. By ergodicity of m and invariance of all Σ^o_i, there is precisely one $I \subset \{1, \ldots, n\}$ such that $m(\Sigma^o_{I}) = 1$ and $m(\partial \Sigma_{I}) = 0$. Further, as points from $\Sigma^o_{I} \setminus A_I$ are wandering (relative to Σ), one has $m(\Sigma^o_{I} \setminus A_I) = 0$.

Fix $m \in \mathbf{M}_{\text{erg}}(\Sigma_I)$ with $m(\Sigma^o_{I}) = 1$, and put $\mathcal{B} := \Sigma_I \times V_I, \mathcal{B}^{(i)} := \Sigma_I \times V_{I \setminus i}, i \in I$. Evidently, \mathcal{B} is a subbundle of $\mathcal{B}^{(i)}$ of codimension one. From the structure of system (E) it follows that the bundles $\mathcal{B}, \mathcal{B}^{(i)}$ are invariant. Denote by $\Lambda_1 < \Lambda_2 \cdots < \Lambda_I$ the Lyapunov exponents on \mathcal{B} for the ergodic measure m (we will call them the internal Lyapunov exponents for m). Among the Lyapunov exponents on $\mathcal{B}^{(i)}$ there is one (denoted by $\lambda^{(i)}(m)$) corresponding to the measurable linear set $\mathcal{C}^{(i)}_k \subset \mathcal{B}^{(i)}$ such that $(\mathcal{C}^{(i)}_k)_x \subset V_I$ for m-a.e. $x \in \Sigma^o_{I}$. We will refer to $\lambda^{(i)}(m)$ as the i-th external Lyapunov exponent for m (this terminology is modeled on Hofbauer’s [6]).

The following result was essentially proved in the author’s paper [10] (except for terminology).

Theorem 3.2. Assume that for each $m \in \mathbf{M}_{\text{erg}}(\partial \Sigma)$ all its external Lyapunov exponents are nonnegative. Then the following hold:

1. The carrying simplex Σ is a C^1 submanifold-with-corners neatly embedded in C.
2. There are $\mu > 0$ and an invariant one-dimensional subbundle \mathcal{S} of $\Sigma \times V$ such that for each $m \in \mathbf{M}_{\text{erg}}(\Sigma)$ one has
 (a) $\Sigma \times V = T\Sigma \oplus \mathcal{S}$, where $T\Sigma$ denotes the tangent bundle of Σ, and $(\mathcal{C}_1)_x \subset \mathcal{S}$ for m-a.e. $x \in \Sigma$.
 (b) Λ_1 is internal.
 (c) $\Lambda_1 \leq -\mu$.

In the present section we make use of part 1 of Theorem 3.2 only.

In view of the above result, we need to prove only the following.

Proposition 3.3. Under the assumptions of Theorem A, for each $m \in \mathbf{M}_{\text{erg}}(\partial \Sigma)$ all its external Lyapunov exponents are nonnegative.

Proof. Fix a measure $m \in \mathbf{M}_{\text{erg}}(\Sigma_I)$ with $m(\Sigma^o_{I}) = 1$, and an index $i \in I$. By Lemma 3.1, $\supp m \subset A_I$. Take a regular point $x \in \supp m$ and a vector $v \in (\mathcal{B}^{(i)})_x \setminus V_I$ such that its i-th coordinate v_i is positive. As $(\partial F_i / \partial x_j)(\phi_t x) = 0$ for $j \neq i$, and $(\partial F_i / \partial x_i)(\phi_t x) = f_i(\phi_t x)$, it follows that the i-th coordinate $D\phi_t(x)v_i$ is the solution of the (nonautonomous) scalar linear ODE $\dot{\eta} = f_i(\phi_t x)\eta$ with initial condition $\eta(0) = v_i$. By strong competitiveness and Lemma 2.1, f_i is positive on the compact invariant set $A_I \subset \Sigma_I$, hence there is $M > 0$ such that $f_i(\phi_t x) \geq M$ for all $(t, x) \in \mathbb{R} \times A_I$. The standard theory of differential inequalities yields

$$\liminf_{t \to \infty} \frac{\log(D\phi_t(x)v_i)}{t} \geq M.$$

$\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n, therefore for all $t \in \mathbb{R}$ we have $\|D\phi_t(x)v\| \geq (D\phi_t(x)v)_i$. By regularity of x we derive

$$\lim_{t \to \infty} \frac{\log\|D\phi_t(x)v\|}{t} = \lambda^{(i)}(m) \geq M > 0.$$

\square
4. Proof of Theorem B

We begin by stating a result which is an adaptation of a theorem of M. Benaîm.

Theorem 4.1. Assume that a C^{k+1}, $k = 1, \ldots$, system (E) satisfies the following:

1. For each $m \in \mathbf{M}_{\text{erg}}(\partial \Sigma)$ all external Lyapunov exponents are nonnegative.
2. There is $\eta > 0$ such that for each $m \in \mathbf{M}_{\text{erg}}(\Sigma)$ the inequality
 \[
 \lambda_1(m) - (k + 1)\lambda_2(m) < -\eta
 \]
 holds, where $\lambda_1(m)$ and $\lambda_2(m)$ denote respectively the smallest and the second smallest Lyapunov exponents (on $\Sigma \times V$) for m.

Then the carrying simplex Σ is a C^{k+1} submanifold-with-corners.

Indication of proof. Theorem 3.2.2 asserts that the tangent bundle TC restricted to Σ invariantly decomposes as the Whitney sum $T\Sigma \oplus \mathbf{S}$, and for each $m \in \mathbf{M}_{\text{erg}}(\Sigma)$ the smallest Lyapunov exponent $\Lambda_1(m) \leq -\mu < 0$ is the exponential growth rate of a vector from \mathbf{S}, while any of the remaining Lyapunov exponents is the exponential growth rate of a vector tangent to Σ. This, together with (4.1), gives, with the help of Prop. 3.3 in [1] (based on a result of S. Schreiber [11]), that there are $c \geq 1$, $\alpha > 0$ and $\beta > 0$ such that

\[
\|D\phi_t(x)v\| \leq ce^{-\alpha t}\|v\| \quad \text{for } t \geq 0, (x, v) \in \mathbf{S},
\]

and

\[
\frac{\|D\phi_t(x)v\|}{\|D\phi_t(x)w\|^{k+1}} \leq ce^{-\beta t} \quad \text{for } t \geq 0, x \in \Sigma, v \in (\mathbf{S})_x, w \in T_x\Sigma \setminus \{0\}.
\]

The rest of the proof consists in applying the C^{k+1} section theorem of Hirsch, Pugh and Shub [5], as in the proof of Thm. 3.4 in [1].

As a consequence of the above theorem and Proposition 3.3, we will have Theorem B once we prove the following.

Proposition 4.2. Assume that a C^{k+1} system (E) satisfies (A) and (C). Then there exists $\eta > 0$ such that for each $m \in \mathbf{M}_{\text{erg}}(\Sigma)$ the inequality (4.1) holds.

Proof. Take $m \in \mathbf{M}_{\text{erg}}(\Sigma)$, and let $I \subset \{1, \ldots, n\}$ be such that $m(\Sigma_I^g) = 1$. From Lemma 3.1 we have supp $m \subset A_I$. By results contained in Sections 3 and 4 of [1], it follows that under assumption (C) there is $\eta_I > 0$ such that

\[
\Lambda^*_I(m) - (k + 1)\Lambda^*_2(m) < -\eta_I
\]

for all m supported on A_I, where $\Lambda^*_I(m)$ [resp. $\Lambda^*_2(m)$] stands for the smallest [resp. second smallest] internal Lyapunov exponent for m. Theorem 3.2.2 gives $\Lambda^*_1(m) = \Lambda_1(m)$. Denote by λ_{min} the smallest external Lyapunov exponent for m. If $\lambda_{\text{min}} \geq \Lambda^*_2(m)$, then $\Lambda^*_2(m) = \Lambda_2(m)$ and the inequality (4.1) is satisfied with η_I. Assume that $\lambda_{\text{min}} < \Lambda^*_2(m)$. Applying Theorem 3.2.2 and Proposition 3.3, we obtain $\Lambda_1(m) \leq -\mu < 0 \leq \lambda_{\text{min}} = \Lambda_2(m)$. Consequently, $\Lambda_1(m) \leq -\mu < 0 \leq (k + 1)\Lambda_2(m)$. It suffices to put

\[
\eta := \min\{\mu, \eta_I : I \subset \{1, \ldots, n\}, \text{card } I \leq n - 1\}.
\]

\[\square\]
5. Discussion

Remark 5.1. In formulating our results, we preferred that the assumptions be easily tractable rather than the weakest possible or that they cover a wide range of applications. In fact, they can be substantially weakened, as the following example shows.

A celebrated Lotka–Volterra system due to May and Leonard [9] has the form

\[
\begin{align*}
\dot{x}_1 &= x_1(1 - x_1 - \alpha x_2 - \beta x_3), \\
\dot{x}_2 &= x_2(1 - \beta x_1 - x_2 - \alpha x_3), \\
\dot{x}_3 &= x_3(1 - \alpha x_1 - \beta x_2 - x_3),
\end{align*}
\]

with \(0 < \beta < 1 < \alpha\) and \(\alpha + \beta > 2\). It is easily verified that (5.1) is dissipative, totally competitive and has five rest points on \(C\): 0 (repelling), \(y_i\) with \(y_i = 1/(1 + \alpha + \beta)\) and three axial ones \(x_i^{(j)}\) with \(x_i^{(j)} = 1\). Furthermore, \(\partial \Sigma\) is an attractor relative to \(\Sigma\) with \(\{y\}\) as its complementary repeller (see pp. 67–68 in the book [7] by Hofbauer and Sigmund). As a consequence, \(M_{\text{erg}}(\Sigma) = \{\delta y, \delta x_1^{(1)}, \delta x_1^{(2)}, \delta x_1^{(3)}\}\).

Remark 5.2. The systems (E) satisfying (A) [resp. (A) and (C)] are robust in the sense that if we perturb \(f\) in a neighborhood of \(\Sigma\) in the \(C^1\) topology, then the perturbed system possesses a carrying simplex of class \(C^1\) (and each of its subsystems (E) is permanent). This can be proved by reasoning similar to that in the proof of Cor. 4.3 in [1].

Remark 5.3. In principle, results contained in Section 3 should carry over to the case where we allow \(f\) to depend periodically on \(t\), although finding an analog of (A) might be tricky (for time-periodic Lotka–Volterra strongly competitive systems, compare e.g. [14]).

References

INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY OF TECHNOLOGY, WYBRZEŻE WYSPIAŃSKIEGO 27, PL-50-370 WROCŁAW, POLAND

E-mail address: mierczyn@banach.im.pwr.wroc.pl